in

Potential impacts of mercury released from thawing permafrost

  • 1.

    Schuster, P. F. et al. Permafrost stores a globally significant amount of mercury. Geophys. Res. Lett. 45, 1463–1471 (2018).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Smith-Downey, N. V., Sunderland, E. M. & Jacob, D. J. Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model. J. Geophys. Res. 115, G03008 (2010).

    ADS  Article  Google Scholar 

  • 3.

    Zimov, S. A. et al. Permafrost carbon: Stock and decomposability of a globally significant carbon pool. Geophys. Res. Lett. 33, https://doi.org/10.1029/2006GL027484 (2006).

  • 4.

    Romanovsky, V., Grosse, G. & Marchenko, S. Past, present and future of permafrost in a changing world. Geo. Soc. Am. 40, 397 (2008).

    Google Scholar 

  • 5.

    Biskaborn et al. Permafrost is warming at a global scale. Nat. Comm. 10, 264 (2019).

    ADS  Article  Google Scholar 

  • 6.

    Koven, C. D., Riley, W. J. & Stern, A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models. J. Clim. V26, 1887–1900 (2013).

    ADS  Google Scholar 

  • 7.

    McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115/15, 3882–3887 (2018).

    ADS  Article  Google Scholar 

  • 8.

    Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Obrist, D. et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 547, 201–204 (2017).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Skyllberg, U., Bloom, P. R., Qian, J., Lin, C. M. & Bleam, W. F. Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environ. Sci. Technol. 40, 4174–4180 (2006).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Giesler, R., Clemmensen, K. E., Wardle, D. A., Klaminder, J. & Bindler, R. Boreal forests sequester large amounts of mercury over millennial time scales in the absence of wildfire. Environ. Sci. Technol. 51, 2621–2627 (2017).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Arnold, J., Gustin, M. S. & Weisberg, P. J. Evidence for nonstomatal uptake of Hg by Aspen and translocation of Hg from foliage to tree rings in Austrian pine. Environ. Sci. Technol. 52, 1174–1182 (2018).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Clackett, S. P., Porter, T. J. & Lehnherr, I. 400-year record of atmospheric mercury from tree-rings in Northwestern Canada. Environ. Sci. Technol. 52, 9625–9633 (2018).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Lindberg, S. E., Hanson, P. J., Meyers, T. P. & Kim, K. H. Air/surface exchange of mercury vapor over forests – the need for a reassessment of continental biogenic emissions. Atm. Environ. 32, 895–908 (1998).

    CAS  Article  Google Scholar 

  • 15.

    Jiskra, M. et al. Mercury deposition and re-emission pathways in boreal forest soils investigated with Hg isotope signatures. Environ. Sci. Technol. 49, 7188–7196 (2015).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Schuster, P. F. et al. Mercury export from the Yukon River Basin and potential response to a changing climate. Environ. Sci. Technol. 45, 9262–9267 (2011).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Schaefer, K. et al. Combined Simple Biosphere/Carnegie-Ames-Stanford Approach terrestrial carbon cycle model. J. Geophys. Res. 113, G03034 (2008).

    Article  Google Scholar 

  • 18.

    Olson, C., Jiskra, M., Biester, H., Chow, J. & Obrist, D. Mercury in active-layer Tundra soils of Alaska: concentrations, pools, origins, and spatial distribution. Glob. Biogeochemical Cycles 32, 1058–1073 (2018).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Mikan, C. J., Schimel, J. P. & Doyle, A. P. Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol. Biochem. 34, 1785–1795 (2002).

    CAS  Article  Google Scholar 

  • 20.

    Wang, Z. & Roulet, N. Comparison of plant litter and peat decomposition changes with permafrost thaw in a subarctic peatland. Plant Soil 417, 197–216 (2017).

    CAS  Article  Google Scholar 

  • 21.

    Wickland, K. P. et al. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska. Environ. Res. Lett. 13, 065011 (2018).

    ADS  Article  Google Scholar 

  • 22.

    Striegl, R. G., Aiken, G. R., Dornblaser, M. M., Raymond, P. A. & Wickland, K. P. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophys. Res. Lett. 32, L21413 (2005).

    ADS  Article  Google Scholar 

  • 23.

    Walvoord, M. A. & Striegl, R. G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 34, L12402 (2007).

    ADS  Article  Google Scholar 

  • 24.

    Holmes, C. D. et al. Global atmospheric model for mercury including oxidation by bromine atoms. Atmos. Chem. Phys. 10, 12037–12057 (2010).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Pacyna, J. M. et al. Current and future levels of mercury atmospheric pollution on a global scale. Atmos. Chem. Phys. 16, 12495–12511 (2016).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Schaefer, K., Zhang, T., Bruhwiler, L. & Barrett, A. P. Amount and timing of permafrost carbon release in response to climate warming. Tellus Series B Chem. Phys. Met. https://doi.org/10.1111/j1600-0889201100527x (2011).

  • 27.

    St Pierre, K. A. et al. Unprecedented increases in total and methyl mercury concentrations downstream of retrogressive thaw slumps in the western Canadian arctic. Environ. Sci. Technol. 52, 14099–14109 (2018).

    ADS  Article  Google Scholar 

  • 28.

    EPA. Ambient water quality criteria for mercury. U.S. Environmental Protection Agency, 440/5-84-026 (https://www.epa.gov/sites/production/files/2019-03/documents/ambient-wqc-mercury-1984.pdf) (1984).

  • 29.

    Brumbaugh, W. G., Krabbenhoft, D. P., Helsel, D. R., Wiener, J. G., & Echols, K. R. A national pilot study of mercury contamination of aquatic ecosystems along multiple gradients: bioaccumulation in fish, Biological Science Report. USGS/BRD/BSR-2001-0009 (2001).

  • 30.

    Scudder, E. et al. Optimizing fish sampling for fish-mercury bioaccumulation factors. Chemosphere 135, 467–473 (2015).

    ADS  Article  Google Scholar 

  • 31.

    National Research Council. Toxicological effects of methylmercury. https://doi.org/10.17226/9899 (The National Academies Press, Washington, DC, 2000).

  • 32.

    Borum, D., Manibusan, M. K., Schoeny, R., Winchester, E. L. Water quality criterion for the protection of human health: methylmercury. EPA-823-R-01-001 (U.S. Environmental Protection Agency, Washington, DC 20460, 2001).

  • 33.

    Schaefer, K. et al. Improving simulated soil temperatures and soil freeze/thaw at high-latitude regions in the Simple Biosphere/Carnegie-Ames-Stanford Approach model. J. Geophys. Res. 114, F02021 (2009).

    ADS  Article  Google Scholar 

  • 34.

    Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Env. Res. Lett. 9, 085003 (2014).

    Article  Google Scholar 

  • 35.

    Schaefer, K. & Jafarov, E. A parameterization of respiration in frozen soils based on substrate availability. Biogeosciences 13, 1991–2001. www.biogeosciences.net/13/1991/2016/ (2016).

  • 36.

    Jafarov, E. & Schaefer, K. The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics. Cryosphere 10, 465–475 (2016).

    ADS  Article  Google Scholar 

  • 37.

    USGS, United States Geological Survey. Data inventory page for site 15565447-Yukon River at Pilot Station, Alaska. U.S. Geological Survey, https://waterdata.usgs.gov/nwis/inventory/site_no=15565447 (2019).

  • 38.

    Agnan, Y., Le Dantec, T., Moore, C. W., Edwards, G. C. & Obrist, D. New constraints on terrestrial surface atmosphere fluxes of gaseous elemental mercury using a global database. Environ. Sci. Technol. 50, 507–524 (2016).

    ADS  CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Did our early ancestors boil their food in hot springs?

    MIT Integrative Microbiology Initiative will stimulate environmental microbiology research