in

Prefrontal cortex exhibits multidimensional dynamic encoding during decision-making

  • 1.

    Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Raposo, D., Kaufman, M. T. & Churchland, A. K. A category-free neural population supports evolving demands during decision-making. Nat. Neurosci. 17, 1784–1792 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Roy, J. E., Buschman, T. J. & Miller, E. K. PFC neurons reflect categorical decisions about ambiguous stimuli. J. Cogn. Neurosci. 26, 1283–1291 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Siegel, M., Buschman, T. J. & Miller, E. K. Cortical information flow during flexible sensorimotor decisions. Science 348, 1352–1355 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Katz, L. N., Yates, J. L., Pillow, J. W. & Huk, A. C. Dissociated functional significance of decision-related activity in the primate dorsal stream. Nature 535, 285–288 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Hanks, T. D. et al. Distinct relationships of parietal and prefrontal cortices to evidence accumulation. Nature 520, 220–223 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Erlich, J. C., Brunton, B. W., Duan, C. A., Hanks, T. D. & Brody, C. D. Distinct effects of prefrontal and parietal cortex inactivations on an accumulation of evidence task in the rat. eLife 4, e05457 (2015).

    PubMed Central  Article  PubMed  Google Scholar 

  • 8.

    Goard, M. J., Pho, G. N., Woodson, J. & Sur, M. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions. eLife 5, e13764 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Bruce, C. J. & Goldberg, M. E. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53, 603–635 (1985).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Kim, J. N. & Shadlen, M. N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2, 176–185 (1999).

    PubMed  Article  Google Scholar 

  • 11.

    Ding, L. & Gold, J. I. Neural correlates of perceptual decision making before, during, and after decision commitment in monkey frontal eye field. Cereb. Cortex 22, 1052–1067 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Stokes, M. G. et al. Dynamic coding for cognitive control in prefrontal cortex. Neuron 78, 364–375 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Purcell, B. A. et al. Neurally constrained modeling of perceptual decision making. Psychol. Rev. 117, 1113–1143 (2010).

    PubMed Central  Article  PubMed  Google Scholar 

  • 15.

    Heitz, R. P. & Schall, J. D. Neural mechanisms of speed-accuracy tradeoff. Neuron 76, 616–628 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Parthasarathy, A. et al. Mixed selectivity morphs population codes in prefrontal cortex. Nat. Neurosci. 20, 1770–1779 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Beck, J. M. et al. Probabilistic population codes for Bayesian decision making. Neuron 60, 1142–1152 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Churchland, M. M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical activity in the null space: permitting preparation without movement. Nat. Neurosci. 17, 440–448 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Lara, A. H., Cunningham, J. P. & Churchland, M. M. Different population dynamics in the supplementary motor area and motor cortex during reaching. Nat. Commun. 9, 2754 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Akaike, H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723 (1974).

    Article  Google Scholar 

  • 22.

    Aoi, M. & Pillow, J. W. Model-based targeted dimensionality reduction for neuronal population data. Adv. Neural Inform. Process. Syst. 31, 6690–6699 (2018).

    Google Scholar 

  • 23.

    Elsayed, G. F. & Cunningham, J. P. Structure in neural population recordings: an expected byproduct of simpler phenomena? Nat. Neurosci. 20, 1310–1318 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 24.

    Rossi-Pool, R. et al. Decoding a decision process in the neuronal population of dorsal premotor cortex. Neuron 96, 1432–1446 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Williamson, R. C. et al. Scaling properties of dimensionality reduction for neural populations and network models. PLoS Comput. Biol. 12, e1005141 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Cunningham, J. P. & Byron, M. Y. Dimensionality reduction for large-scale neural recordings. Nature Neurosci. 17, 1500–1509 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Kobak, D. et al. Demixed principal component analysis of neural population data. eLife 5, e10989 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 28.

    Machens, C. K. Demixing population activity in higher cortical areas. Front. Comput. Neurosci. 4, 126 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Machens, C. K., Romo, R. & Brody, C. D. Functional, but not anatomical, separation of ‘what’ and ‘when’ in prefrontal cortex. J. Neurosci. 30, 350–360 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Romo, R., Brody, C. D., Hernández, A. & Lemus, L. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399, 470–473 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Hernández, A., Zainos, A. & Romo, R. Temporal evolution of a decision-making process in medial premotor cortex. Neuron 33, 959–972 (2002).

    PubMed  Article  Google Scholar 

  • 32.

    Romo, R., Hernández, A., Zainos, A., Lemus, L. & Brody, C. D. Neuronal correlates of decision-making in secondary somatosensory cortex. Nat. Neurosci. 5, 1217–1225 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Romo, R., Hernández, A. & Zainos, A. Neuronal correlates of a perceptual decision in ventral premotor cortex. Neuron 41, 165–173 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Elsayed, G. F., Lara, A. H., Kaufman, M. T., Churchland, M. M. & Cunningham, J. P. Reorganization between preparatory and movement population responses in motor cortex. Nat. Commun. 7, 13239 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Gold, J. I. & Shadlen, M. N. The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. J. Neurosci. 23, 632–651 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Kiani, R., Hanks, T. D. & Shadlen, M. N. Bounded integration in parietal cortex underlies decisions even when viewing duration is dictated by the environment. J. Neurosci. 28, 3017–3029 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Meister, M. L. R., Hennig, J. A. & Huk, A. C. Signal multiplexing and single-neuron computations in lateral intraparietal area during decision-making. J. Neurosci. 33, 2254–2267 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Latimer, K. W., Yates, J. L., Meister, M. L. R., Huk, A. C. & Pillow, J. W. Single-trial spike trains in parietal cortex reveal discrete steps during decision-making. Science 349, 184–187 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Yates, J. L., Park, I. M., Katz, L. N., Pillow, J. W. & Huk, A. C. Functional dissection of signal and noise in mt and lip during decision-making. Nat. Neurosci. 20, 1285–1292 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 40.

    Vernet, M., Quentin, R., Chanes, L., Mitsumasu, A. & Valero-Cabré, A. Frontal eye field, where art thou? anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Front. Integr. Neurosci. 8, 1–24 (2014).

    Google Scholar 

  • 41.

    Bruce, C. J., Goldberg, M. E., Bushnell, M. C. & Stanton, G. B. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54, 714–734 (1985).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Rizzolatti, G., Riggio, L., Dascola, I. & Umiltá, C. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25, 31–40 (1987).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Thompson, K. G., Biscoe, K. L. & Sato, T. R. Neuronal basis of covert spatial attention in the frontal eye field. J. Neurosci. 25, 9479–9487 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Schall, J. D. On the role of frontal eye field in guiding attention and saccades. Vision Res. 44, 1453–1467 (2004).

    PubMed  Article  Google Scholar 

  • 45.

    Storey, J. D. A direct approach to false discovery rates. J. R. Stat. Soc. Series B Stat. Methodol. 64, 479–498 (2002).

    Article  Google Scholar 

  • 46.

    Brody, C. D., Hernández, A., Zainos, A. & Romo, R. Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb. Cortex 13, 1196–1207 (2003).

    PubMed  Article  Google Scholar 

  • 47.

    Roitman, J. D. & Shadlen, M. N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

    PubMed Central  Article  PubMed  Google Scholar 

  • 48.

    Lawrence, N. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. J. Mach. Learn. Res. 6, 1783–1816 (2005).

    Google Scholar 

  • 49.

    Cunningham, J. P. & Ghahramani, Z. Linear dimensionality reduction: survey, insights, and generalizations. J. Mach. Learn. Res. 16, 2859–2900 (2015).

  • 50.

    Mackevicius, E. L. et al. Unsupervised discovery of temporal sequences in high-dimensional datasets, with applications to neuroscience. eLife 8, e38471 (2019).

    PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts

    Geologists raise the speed limit for how fast continental crust can form