in

Protecting nursery areas without fisheries management is not enough to conserve the most endangered parrotfish of the Atlantic Ocean

  • 1.

    Gaines, S. D., White, C., Carr, M. H. & Palumbi, S. R. Designing marine reserve networks for both conservation and fisheries management. PNAS 107(43), 18286–18293 (2010).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Dahlgren, C. P. et al. Marine nurseries and effective juvenile habitats: concepts and applications. Mar. Ecol. Prog. Ser. 312, 291–295 (2006).

    ADS  Article  Google Scholar 

  • 3.

    Garla, R. C., Chapman, D. D., Wetherbee, B. M. & Shivji, M. Movement patterns of young Caribbean reef sharks, Carcharhinus perezi, at Fernando de Noronha Archipelago, Brazil: the potential of marine protected areas for conservation of a nursery ground. Mar. Biol. 149, 189–199 (2006).

    Article  Google Scholar 

  • 4.

    Almeida, A. C., Baeza, J. A., Fransozo, V., Castilho, A. L. & Fransozo, A. Reproductive biology and recruitment of Xiphopenaeus kroyeri in a marine protected area in the Western Atlantic: implications for resource management. Aquat. Biol. 17, 57–69 (2012).

    Article  Google Scholar 

  • 5.

    Crowder, L. B., Lyman, S. J., Figueira, W. F. & Priddy, J. Source-sink population dynamics and the problem of siting marine reserves. B. Mar. Sci. 66(3), 799–820 (2000).

    Google Scholar 

  • 6.

    Halpern, B. S., Lester, S. E. & Kellner, J. Spillover from marine reserves and the replenishment of fished stocks. Environ. Conserv. 36(4), 268–276 (2010).

    Article  Google Scholar 

  • 7.

    Roberts, C. M. Selecting marine reserve locations: optimality versus opportunism. B. Mar. Sci. 66(3), 581–592 (2000).

    Google Scholar 

  • 8.

    Alder, J. Have tropical marine protected areas worked? An initial analysis of their success. Coast. Manage. 24(2), 97–114 (1996).

    ADS  Article  Google Scholar 

  • 9.

    Cinner, J. E. Designing marine reserves to reflect local socioeconomic conditions: lessons from long-enduring customary management systems. Coral Reefs 26, 1035–1045 (2007).

    ADS  Article  Google Scholar 

  • 10.

    Marinesque, S., Kaplan, D. M. & Rodwell, L. D. Global implementation of marine protected areas: Is the developing world being left behind?. Mar. Policy. 36, 727–737 (2012).

    Article  Google Scholar 

  • 11.

    Giglio, V. J. et al. Large and remote marine protected areas in the South Atlantic Ocean are flawed and raise concerns: Comments on Soares and Lucas (2018). Mar. Policy. 96, 13–17 (2018).

    Article  Google Scholar 

  • 12.

    Francini-Filho, R. B. & Moura, R. L. Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquat. Conserv. 18, 1166–1179 (2008).

    Article  Google Scholar 

  • 13.

    Bonaldo, R. M., Pires, M. M., Guimarães-Junior, P. R., Hoey, A. S. & Hay, M. E. Small marine protected areas in Fiji provide refuge for reef fish assemblages, feeding groups, and corals. PLoS ONE 12(1), e0170638 (2017).

    Article  CAS  Google Scholar 

  • 14.

    Estes, J. A. et al. Trophic downgrading of Planet Earth. Science 333(6040), 301–306 (2011).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Bonaldo, R. M., Hoey, A. S. & Bellwood, D. R. The ecosystem roles of parrotfishes on tropical reefs. Oceanogr. Mar. Biol. 52, 81–132 (2014).

    Article  Google Scholar 

  • 16.

    Lellys, N. T., Moura, R. L., Bonaldo, R. M., Francini-Filho, R. B. & Gibran, F. Z. Parrotfish functional morphology and bioerosion on SW Atlantic reefs. Mar. Ecol. Prog. Ser. 629, 149–163 (2019).

    ADS  Article  Google Scholar 

  • 17.

    Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 279(5352), 860–863 (1998).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Edwards, C. B. et al. Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proc. Roy. Soc. B Biol. Sci. 281(1774), 20131835 (2014).

  • 19.

    Bender, M. G. et al. Local ecological knowledge and scientific data reveal overexploitation by multigear artisanal fisheries in the Southwestern Atlantic. PLoS ONE 9(10), e110332 (2014).

    ADS  Article  CAS  Google Scholar 

  • 20.

    Roos, N. C., Pennino, M. G., Lopes, P. F. M. & Carvalho, A. R. Multiple management strategies to control selectivity on parrotfishes harvesting. Ocean. Coast. Manag. 134, 20–29 (2016).

    Article  Google Scholar 

  • 21.

    Freitas, M. O. et al. Age, growth, reproduction and management of Southwestern Atlantic’s largest and endangered herbivorous reef fish (Scarus trispinosus Valenciennes, 1840). PeerJ 7, e7459. https://doi.org/10.7717/peerj.7459 (2019).

    Article  Google Scholar 

  • 22.

    Roos, N. C., Taylor, B. M., Carvalho, A. R. & Longo, G. O. Demography of the largest and most endangered Brazilian parrotfish, Scarus trispinosus, reveals overfishing. Endanger. Species Res. 41, 319–327 (2020).

    Article  Google Scholar 

  • 23.

    Padovani-Ferreira, B. et al. Scarus trispinosus. https://www.iucnredlist.org/details/190748/0 (2012).

  • 24.

    Comeros-Raynal, M. T. et al. The likelihood of extinction of iconic and dominant herbivores and detritivores of coral reefs: the parrotfishes and surgeonfishes. PLoS ONE 7(7), e39825 (2012).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Jackson, J. B. C., Donovan, M., Cramer, K. & Lam, V. Status and trends of Caribbean coral reefs 1970–2012. Global Coral Reef Monitoring Network, IUCN, Gland, Switzerland. 306p. (2014).

  • 26.

    Hutchings, J. A. & Reynolds, J. D. Marine fish population collapses: consequences for recovery and extinction risk. Bioscience 54(4), 297–309 (2004).

    Article  Google Scholar 

  • 27.

    Francini-Filho, R. B. et al. Dynamics of coral reef benthic assemblages of the Abrolhos Bank, Eastern Brazil: Inferences on natural and anthropogenic drivers. PLoS ONE 8(1), e54260 (2013).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Moura, R. L. et al. Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont. Shelf Res. 70, 109–111 (2013).

    ADS  Article  Google Scholar 

  • 29.

    Minte-Vera, C. V., Moura, R. L. M. & Francini-Filho, R. B. Nested sampling: an improved visual-census technique for studying reef fish assemblages. Mar. Ecol. Prog. Ser. 367, 283–293 (2008).

    ADS  Article  Google Scholar 

  • 30.

    Wheeler, R. E. Permutation tests for linear models in R. The Comprehensive R Archive Network (CRAN) Available at https://cran.rproject.org/web/packages/lmPerm/vignettes/lmPerm.pdf (2016).

  • 31.

    R: A Language and Environment for Statistical Computing. R Core Team. R Foundation for Statistical Computing. Vienna, Austria. Available at https://www.R-project.org. (2020).

  • 32.

    Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. R package version 2.3.25. Available at https://CRAN.R-project.org/package=rcompanion (2020).

  • 33.

    Phillips, N. yarrr: A Companion to the e-Book “YaRrr!: The Pirate’s Guide to R”. R package version 0.1.5. Available at https://CRAN.R-project.org/package=yarrr (2017).

  • 34.

    Pennino, M. G., Vilela, R. & Bellido, J. M. Effects of environmental data temporal resolution on the performance of species distribution models. J. Marine Syst. 189, 78–86 (2019).

    ADS  Article  Google Scholar 

  • 35.

    Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B. 71(2), 319–392 (2009).

    MathSciNet  MATH  Article  Google Scholar 

  • 36.

    Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4. Available at https://ggplot2.tidyverse.org. (2016).

  • 37.

    Roos, N. C., Carvalho, A. R., Lopes, P. F. M. & Pennino, M. G. Modelling sensitive parrotfish (Labridae: Scarini) habitats along the Brazilian coast. Mar. Envir. Res. 110, 92–100 (2015).

    CAS  Article  Google Scholar 

  • 38.

    Potts, J. M. & Elith, J. Comparing species abundance models. Ecol. Model. 199, 153–163 (2006).

    Article  Google Scholar 

  • 39.

    Gómez-Rubio, V. Bayesian inference with INLA (Chapman & Hall/CRC Press, Boca Raton, FL, 2019).

    Google Scholar 

  • 40.

    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0–7. Available at https://CRAN.R-project.org/package=raster (2019).

  • 41.

    Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R package version 1.0–1. Available at https://CRAN.R-project.org/package=maptools (2020).

  • 42.

    South, A. rworldmap: A New R package for Mapping Global Data. The R Journal 3(1): 35–43. Available at https://journal.r-project.org/archive/2011-1/RJournal_2011-1_South.pdf. (2011).

  • 43.

    Rolim, F. A. et al. Network of small no-take marine reserves reveals greater abundance and body size of fisheries target species. PLoS ONE 14(1), e0204970 (2019).

    CAS  Article  Google Scholar 

  • 44.

    Cox, C., Valdivia, A., McField, M., Castillo, K. & Bruno, J. F. Establishment of marine protected areas alone does not restore coral reef communities in Belize. Mar. Ecol. Prog. Ser. 563, 65–79 (2017).

    ADS  Article  Google Scholar 

  • 45.

    Gratwicke, B. & Speight, M. R. The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J. Fish Biol. 66, 650–667 (2005).

    Article  Google Scholar 

  • 46.

    Hamilton, R. J. et al. Logging degrades nursery habitat for an iconic coral reef fish. Biol. Conser. 210, 273–280 (2017).

    Article  Google Scholar 

  • 47.

    Roos, N. C., Pennino, M. G., Carvalho, A. R. & Longo, G. O. Drivers of abundance and biomass of Brazilian parrotfishes. Mar. Ecol. Prog. Ser. 623, 117–130 (2019).

    ADS  Article  Google Scholar 

  • 48.

    Francini-Filho, R. B., Ferreira, C. M., Coni, E. O. C., Moura, R. L. & Kaufman, L. Foraging activity of roving herbivorous reef fish (Acanthuridae and Scaridae) in eastern Brazil: influence of resource availability and interference competition. J. Mar. 90, 481–492 (2010).

    Google Scholar 

  • 49.

    Francini-Filho, R. B., Moura, R. L., Ferreira, C. M. & Coni, E. O. C. Live coral predation by parrotfishes (Perciformes: Scaridae) in the Abrolhos Bank, eastern Brazil, with comments on the classification of species into functional groups. Neotrop. Ichthyol. 6(2), 191–200 (2008).

    Article  Google Scholar 

  • 50.

    Moura, R. L. & Fracini-Filho, R. B. Reef and shore fishes of the Abrolhos Bank, Brazil. In: Allen G, Dutra GF, Werner TB, Moura RL (Eds) A Biological Assessment of Abrolhos Bank, Bahia, Brazil. Washington: RAP Bull. Biol. Assess 40–55 (2006).

  • 51.

    Salz, R. J. Greenback Parrotfish (Scarus trispinosus) Status Review Report. Report to National Marine Fisheries Service, Office of Protected Resources. 56 pp (2015).

  • 52.

    Nunes, J. A. C. C., Medeiros, D. V., Reis-Filho, J. A., Sampaio, C. L. S. & Barros, F. Reef fishes captured by recreational spearfishing on reefs of Bahia State, northeast Brazil. Biota Neotrop. 12(1), 179–185 (2012).

    Article  Google Scholar 

  • 53.

    Giglio, V. J., Suhett, A. C., Zapelini, C. S., Ramiro, A. S. & Quimbayo, J. P. Assessing captures of recreational spearfishing in Abrolhos reefs, Brazil, through social media. Reg. Stud. Mar. Sci. 34, 100995 (2020).

    Article  Google Scholar 

  • 54.

    Hawkins, J. P. & Roberts, C. M. Effects of fishing on sex-changing Caribbean parrotfishes. Biol. Conser. 115, 213–226 (2003).

    Article  Google Scholar 

  • 55.

    Taylor, B. M., Houk, P., Russ, G. R. & Choat, J. H. Life histories predict vulnerability to overexploitation in parrotfishes. Coral Reefs 33(4), 869–878 (2014).

    ADS  Article  Google Scholar 

  • 56.

    Francini-Filho, R. B. & Moura, R. L. Evidence for spillover of reef fishes from a no-take marine reserve: an evaluation using the before-after control-impact (BACI) approach. Fish. Res. 93, 346–356 (2008).

    Article  Google Scholar 

  • 57.

    Kaplan, D. M., Botsford, L. W. & Jorgensen, S. Dispersal per recruit: an efficient method for assessing sustainability in marine reserve networks. Ecol. Appl. 16(6), 2248–2263 (2006).

    Article  Google Scholar 

  • 58.

    Paterson, C. J. et al. Fisheries refugia: A novel approach to integrating fisheries and habitat management in the context of small-scale fishing pressure. Ocean Coast. Manag. 85, 214–229 (2013).

    Article  Google Scholar 

  • 59.

    Pereira, P. H. C., Macedo, C. H., Nunes, J. A. C. C., Marangoni, L. F. D. B. & Bianchini, A. Effects of depth on reef fish communities: insights of a “deep refuge hypothesis” from Southwestern Atlantic reefs. PLoS ONE 13(9), e0203072 (2018).

    Article  CAS  Google Scholar 

  • 60.

    Cavalcanti, G. S. et al. Sinkhole-like structures as bioproductivity hotspots in the Abrolhos Bank. Cont. Shelf Res. 70, 126–134 (2013).

    ADS  Article  Google Scholar 

  • 61.

    Feitoza, M. F., Rosa, R. S. & Rocha, L. A. Ecology and zoogeography of deep reef fishes in Northeastern Brazil. B. Mar. Sci. 76(3), 725–742 (2005).

    Google Scholar 

  • 62.

    Rife, A. N., Erisman, B., Sanchez, A. & Aburto-Oropeza, O. When good intentions are not enough … Insights on networks of “paper park” marine protected areas. Conserv. Lett. 6, 200–212 (2013).

    Article  Google Scholar 

  • 63.

    Hamilton, R. J. et al. Hyperstability masks declines in bumphead parrotfish (Bolbometopon muricatum) populations. Coral Reefs 35(3), 751–763 (2016).

  • 64.

    Leão, Z. M. et al. (2016). Brazilian coral reefs in a period of global change: A synthesis. Braz. j. oceanogr. 64(SPE2), 97–116 (2016).

  • 65.

    Costa, T. J. et al. Expansion of an invasive coral species over Abrolhos Bank Southwestern Atlantic. Mar. Pollut. Bull. 85(1), 252–253 (2014).

    CAS  Article  Google Scholar 

  • 66.

    Lopes, P. F. M., Rosa, E. M., Salyvonchyk, S., Nora, V. & Begossi, A. Suggestions for fixing top-down coastal fisheries management through participatory approaches. Mar. Policy. 40, 100–110 (2013).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Power-free system harnesses evaporation to keep items cool

    Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed