in

Rain-induced bioecological resuspension of radiocaesium in a polluted forest in Japan

  • 1.

    Heo, K. J., Kim, H. B. & Lee, B. U. Concentration of environmental fungal and bacterial bioaerosols during the monsoon season. J. Aerosol. Sci. 77, 31–37. https://doi.org/10.1016/j.jaerosci.2014.07.001 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 2.

    Huffman, J. A. et al. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys. 13, 6151–6164. https://doi.org/10.5194/acp-13-6151-2013 (2013).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Joung, Y. S. & Buie, C. R. Aerosol generation by raindrop impact on soil. Nat. Commun. 6, 6083. https://doi.org/10.1038/ncomms7083 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 4.

    Prenni, A. J. et al. The impact of rain on ice nuclei populations at a forested site in Colorado. Geophys. Res. Lett. 40, 227–231. https://doi.org/10.1029/2012gl053953 (2013).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Schumacher, C. J. et al. Seasonal cycles of fluorescent biological aerosol particles in boreal and semi-arid forests of Finland and Colorado. Atmos. Chem. Phys. 13, 11987–12001. https://doi.org/10.5194/acp-13-11987-2013 (2013).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Yue, S. et al. Springtime precipitation effects on the abundance of fluorescent biological aerosol particles and HULIS in Beijing. Sci. Rep. 6, 29618. https://doi.org/10.1038/srep29618 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Joung, Y. S., Ge, Z. & Buie, C. R. Bioaerosol generation by raindrops on soil. Nat. Commun. 8, 14668. https://doi.org/10.1038/ncomms14668 (2017).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Wang, B. et al. Airborne soil organic particles generated by precipitation. Nat. Geosci. 9, 433–437. https://doi.org/10.1038/ngeo2705 (2016).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Bear, I. J. & Thomas, R. G. Nature of argillaceous odour. Nature 201, 993–1000. https://doi.org/10.1038/201993a0 (1964).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Gerber, N. N. Geosmin an earthy-smelling substance isolated from actinomycetes. Biotechnol. Bioeng. 9, 321–330. https://doi.org/10.1002/bit.260090305 (1967).

    CAS  Article  Google Scholar 

  • 11.

    Gilet, T. & Bourouiba, L. Rain-induced ejection of pathogens from leaves: revisiting the hypothesis of splash-on-film using high-speed visualization. Integr. Comp. Biol. 54, 974–984. https://doi.org/10.1093/icb/icu116 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 12.

    China, S. et al. Rupturing of biological spores as a source of secondary particles in Amazonia. Environ. Sci. Technol. 50, 12179–12186. https://doi.org/10.1021/acs.est.6b02896 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 13.

    Igarashi, Y. et al. Fungal spore involvement in the resuspension of radiocaesium in summer. Sci. Rep. 9, 1954. https://doi.org/10.1038/s41598-018-37698-x (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Kinase, T. et al. The seasonal variations of atmospheric 134,137Cs activity and possible host particles for their resuspension in the contaminated areas of Tsushima and Yamakiya, Fukushima, Japan. Progr. Earth Planet. Sci. 5, 12. https://doi.org/10.1186/s40645-018-0171-z (2018).

    Article  Google Scholar 

  • 15.

    Holt, M., Campbell, R. J. & Nikitin, M. B. Fukushima Nuclear Disaster. (Library of Congress, Congressional Research Service, 2012)

  • 16.

    Ishizuka, M. et al. Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface. J. Environ. Radioact. 166, 436–448. https://doi.org/10.1016/j.jenvrad.2015.12.023 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Igarashi, Y., Kajino, M., Zaizen, Y., Adachi, K. & Mikami, M. Atmospheric radioactivity over Tsukuba, Japan: A summary of three years of observations after the FDNPP accident. Progr. Earth Planet. Sci. 2, 44. https://doi.org/10.1186/s40645-015-0066-1 (2015).

    Article  Google Scholar 

  • 18.

    Hirose, K. Temporal variation of monthly 137Cs deposition observed in Japan: Effects of the Fukushima Daiichi nuclear power plant accident. Appl. Radiat. Isot. 81, 325–329. https://doi.org/10.1016/j.apradiso.2013.03.076 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 19.

    Igarashi, Y. Anthropogenic radioactivity in aerosol—a review focusing on studies during the 2000s. Jpn. J. Health Phys. 44, 313–323. https://doi.org/10.5453/jhps.44.313 (2009).

    CAS  Article  Google Scholar 

  • 20.

    Kajino, M. et al. Long-term assessment of airborne radiocesium after the Fukushima nuclear accident: Re-suspension from bare soil and forest ecosystems. Atmos. Chem. Phys. 16, 13149–13172. https://doi.org/10.5194/acp-16-13149-2016 (2016).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Garger, E. K., Kuzmenko, Y. I., Sickinger, S. & Tschiersch, J. Prediction of the 137Cs activity concentration in the atmospheric surface layer of the Chernobyl exclusion zone. J. Environ. Radioact. 110, 53–58. https://doi.org/10.1016/j.jenvrad.2012.01.017 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Evangeliou, N. et al. Resuspension and atmospheric transport of radionuclides due to wildfires near the chernobyl nuclear power plant in 2015: An impact assessment. Sci. Rep. 6, 26062. https://doi.org/10.1038/srep26062 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Yoschenko, V. I. et al. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: Part I. Fire experiments. J. Environ. Radioact. 86, 143–163. https://doi.org/10.1016/j.jenvrad.2005.08.003 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Kinase, S., Kimura, M. & Hato, S. in International Symposium on Environmental monitoring and dose estimation of residents after accident of TEPCO’s Fukushima Daiichi Nuclear Power Stations.

  • 25.

    Bunzl, K., Hotzl, H. & Winkler, R. Spruce pollen as a source of increased radiocesium concentrations in air. Naturwissenschaften 80, 173–174. https://doi.org/10.1007/bf01226376 (1993).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 26.

    Teherani, D. K. Accumulation of 103Ru, 137Cs and 134Cs in fruitbodies of various mushrooms from Austria after the chernobyl incident. J. Radioanal. Nucl. Chem. 117, 69–74. https://doi.org/10.1007/BF02165314 (1987).

    CAS  Article  Google Scholar 

  • 27.

    Yoshida, S. & Muramatsu, Y. Concentrations of radiocesium and potassium in Japanese mushrooms. Environ. Sci. 7, 63–70. https://doi.org/10.11353/sesj1988.7.63 (1994).

    Article  Google Scholar 

  • 28.

    Duff, M. C. & Ramsey, M. L. Accumulation of radiocesium by mushrooms in the environment: A literature review. J. Environ. Radioact. 99, 912–932. https://doi.org/10.1016/j.jenvrad.2007.11.017 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Sesartić, A. & Dallafior, T. N. Global fungal spore emissions, review and synthesis of literature data. Biogeosciences (Online) 8, 1181–1192. https://doi.org/10.5194/bg-8-1181-2011 (2011).

    ADS  Article  Google Scholar 

  • 30.

    Fröhlich-Nowoisky, J. et al. Bioaerosols in the earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182, 346–376. https://doi.org/10.1016/j.atmosres.2016.07.018 (2016).

    CAS  Article  Google Scholar 

  • 31.

    Yamaguchi, T. et al. Autoradiography of the fruiting body and spore print of wood-cultivated shiitake mushroom (Lentinula Edodes) from a restricted habitation area. Mushroom Sci. Biotechnol. 23, 125–129 (2015).

    Google Scholar 

  • 32.

    Urbanová, M., Šnajdr, J. & Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 84, 53–64. https://doi.org/10.1016/j.soilbio.2015.02.011 (2015).

    CAS  Article  Google Scholar 

  • 33.

    Zhang, P. et al. Effect of litter quality on its decomposition in broadleaf and coniferous forest. Eur. J. Soil Biol. 44, 392–399. https://doi.org/10.1016/j.ejsobi.2008.04.005 (2008).

    Article  Google Scholar 

  • 34.

    NARO. National Agriculture and Food Research Organization, llustrated Encyclopedia of Forage Crop Disease, <https://www.naro.affrc.go.jp/org/nilgs/diseases/detitle.html>

  • 35.

    Almaguer, M., Aira, M. J., Rodriguez-Rajo, F. J., Fernandez-Gonzalez, M. & Rojas-Flores, T. I. Thirty-four identifiable airborne fungal spores in Havana, Cuba. Ann. Agric. Environ. Med. 22, 215–220. https://doi.org/10.5604/12321966.1152068 (2015).

    Article  PubMed  Google Scholar 

  • 36.

    Kumar, A. & Attri, A. K. Characterization of fungal spores in ambient particulate matter: A study from the Himalayan region. Atmos. Environ. 142, 182–193. https://doi.org/10.1016/j.atmosenv.2016.07.049 (2016).

    ADS  CAS  Article  Google Scholar 

  • 37.

    Guarín, F. A., Abril, M. A. Q., Alvarez, A. & Fonnegra, R. Atmospheric pollen and spore content in the urban area of the city of Medellin, Colombia. Hoehnea 42, 9–19 (2015).

    Article  Google Scholar 

  • 38.

    Fitt, B. D. L., Mccartney, H. A. & Walklate, P. J. The role of rain in dispersal of pathogen inoculum. Annu. Rev. Phytopathol. 27, 241–270. https://doi.org/10.1146/annurev.py.27.090189.001325 (1989).

    Article  Google Scholar 

  • 39.

    Gilet, T. & Bourouiba, L. Fluid fragmentation shapes rain-induced foliar disease transmission. J. R. Soc. Interface 12, 20141092. https://doi.org/10.1098/rsif.2014.1092 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Gregory, P. H., Guthrie, E. J. & Bunce, M. E. Experiments on splash dispersal of fungus spores. J. Gen. Microbiol. 20, 328–354. https://doi.org/10.1099/00221287-20-2-328 (1959).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    Bauer, H. et al. Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmos. Environ. 42, 588–593. https://doi.org/10.1016/j.atmosenv.2007.10.013 (2008).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Lau, A. P. S., Lee, A. K. Y., Chan, C. K. & Fang, M. Ergosterol as a biomarker for the quantification of the fungal biomass in atmospheric aerosols. Atmos. Environ. 40, 249–259. https://doi.org/10.1016/j.atmosenv.2005.09.048 (2006).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Pöhlker, C., Huffman, J. A. & Pöschl, U. Autofluorescence of atmospheric bioaerosols—fluorescent biomolecules and potential interferences. Atmos. Meas. Tech. 5, 37–71. https://doi.org/10.5194/amt-5-37-2012 (2012).

    CAS  Article  Google Scholar 

  • 44.

    Pöschl, U. et al. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329, 1513–1516. https://doi.org/10.1126/science.1191056 (2010).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 45.

    Elbert, W., Taylor, P. E., Andreae, M. O. & Poschl, U. Contribution of fungi to primary biogenic aerosols in the atmosphere: Wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos. Chem. Phys. 7, 4569–4588. https://doi.org/10.5194/acp-7-4569-2007 (2007).

    ADS  CAS  Article  Google Scholar 

  • 46.

    Hassett, M. O., Fischer, M. W. & Money, N. P. Mushrooms as rainmakers: How spores act as nuclei for raindrops. PLoS ONE 10, e0140407. https://doi.org/10.1371/journal.pone.0140407 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Pringle, A., Patek, S. N., Fischer, M., Stolze, J. & Money, N. P. The captured launch of a ballistospore. Mycologia 97, 866–871. https://doi.org/10.3852/mycologia.97.4.866 (2005).

    Article  PubMed  Google Scholar 

  • 48.

    Turner, J. C. R. & Webster, J. Mass and momentum transfer on the small scale: how do mushrooms shed their spores?. Chem. Eng. Sci. 46, 1145–1149. https://doi.org/10.1016/0009-2509(91)85107-9 (1991).

    Article  Google Scholar 

  • 49.

    Hirst, J. M. & Stedman, O. J. Dry liberation of fungus spores by raindrops. J. Gen. Microbiol. 33, 335–344. https://doi.org/10.1099/00221287-33-2-335 (1963).

    CAS  Article  PubMed  Google Scholar 

  • 50.

    Huber, L., Madden, L. V. & Fitt, B. D. L. in The Epidemiology of Plant Diseases (ed D. Gareth Jones) Ch. Chapter 17, 348–370 (Springer Netherlands, Berlin, 1998).

  • 51.

    Kim, S., Park, H., Gruszewski, H. A., Schmale, D. G. 3rd. & Jung, S. Vortex-induced dispersal of a plant pathogen by raindrop impact. Proc. Natl. Acad. Sci. U.S.A. 116, 4917–4922. https://doi.org/10.1073/pnas.1820318116 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Levia, D. F., Hudson, S. A., Llorens, P. & Nanko, K. Throughfall drop size distributions: A review and prospectus for future research. Wiley Interdiscip. Rev.-Water 4, e1225. https://doi.org/10.1002/wat2.1225 (2017).

    Article  Google Scholar 

  • 53.

    Iida, S. I. et al. Intrastorm scale rainfall interception dynamics in a mature coniferous forest stand. J. Hydrol. 548, 770–783. https://doi.org/10.1016/j.jhydrol.2017.03.009 (2017).

    ADS  Article  Google Scholar 

  • 54.

    Sun, X. C., Onda, Y., Kato, H., Gomi, T. & Liu, X. Y. Estimation of throughfall with changing stand structures for Japanese cypress and cedar plantations. For. Ecol. Manag. 402, 145–156. https://doi.org/10.1016/j.foreco.2017.07.036 (2017).

    Article  Google Scholar 

  • 55.

    Murakami, S. A proposal for a new forest canopy interception mechanism: Splash droplet evaporation. J. Hydrol. 319, 72–82. https://doi.org/10.1016/j.jhydrol.2005.07.002 (2006).

    ADS  Article  Google Scholar 

  • 56.

    Murakami, S. Canopy interception and the effect of forest on rainfall increase. Water Sci. 56, 82–99. https://doi.org/10.20820/suirikagaku.56.1_82 (2012).

    Article  Google Scholar 

  • 57.

    Huffman, J. A., Treutlein, B. & Pöschl, U. Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe. Atmos. Chem. Phys. 10, 3215–3233. https://doi.org/10.5194/acp-10-3215-2010 (2010).

    ADS  CAS  Article  Google Scholar 

  • 58.

    Savage, N. J. et al. Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles. Atmos. Meas. Tech. 10, 4279–4302. https://doi.org/10.5194/amt-10-4279-2017 (2017).

    Article  Google Scholar 

  • 59.

    Butterworth, J. & Mccartney, H. A. The dispersal of bacteria from leaf surfaces by water splash. J. Appl. Bacteriol. 71, 484–496. https://doi.org/10.1111/j.1365-2672.1991.tb03822.x (1991).

    Article  Google Scholar 

  • 60.

    Chatani, S., Matsunaga, S. N. & Nakatsuka, S. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol. Atmos. Environ. 120, 38–50. https://doi.org/10.1016/j.atmosenv.2015.08.086 (2015).

    ADS  CAS  Article  Google Scholar 

  • 61.

    Han, Y. M., Iwamoto, Y., Nakayama, T., Kawamura, K. & Mochida, M. Formation and evolution of biogenic secondary organic aerosol over a forest site in Japan. J. Geophys. Res.-Atmos. 119, 259–273. https://doi.org/10.1002/2013jd020390 (2014).

    ADS  CAS  Article  Google Scholar 

  • 62.

    Miyazaki, Y. et al. Evidence of formation of submicrometer water-soluble organic aerosols at a deciduous forest site in northern Japan in summer. J. Geophys. Res.-Atmos. https://doi.org/10.1029/2012jd018250 (2012).

    Article  Google Scholar 

  • 63.

    Pringle, A. Asthma and the diversity of fungal spores in air. PLoS Pathog. 9, e1003371. https://doi.org/10.1371/journal.ppat.1003371 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 64.

    Tobo, Y. et al. Biological aerosol particles as a key determinant of ice nuclei populations in a forest ecosystem. J. Geophys. Res.-Atmos. 118, 10100–10110. https://doi.org/10.1002/jgrd.50801 (2013).

    ADS  Article  Google Scholar 

  • 65.

    Iwata, A. et al. Release of highly active ice nucleating biological particles associated with rain. Atmosphere https://doi.org/10.3390/atmos10100605 (2019).

    Article  Google Scholar 

  • 66.

    Murray, B. J., O’Sullivan, D., Atkinson, J. D. & Webb, M. E. Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev. 41, 6519–6554. https://doi.org/10.1039/c2cs35200a (2012).

    CAS  Article  PubMed  Google Scholar 

  • 67.

    Homepage of High-Resolution Land Use and Land Cover Map Products. https://www.eorc.jaxa.jp/ALOS/en/lulc/lulc_index.htm.

  • 68.

    Torii, T. et al. Investigation of radionuclide distribution using aircraft for surrounding environmental survey from Fukushima Dai-ichi Nuclear Power Plant. JAEA-Technology–2012–036, 192 (2012).

  • 69.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 70.

    Lee, S. B. & Taylor, J. W. In PCR Protocols (eds Innis, M. A. et al.) 282–287 (Academic Press, New York, 1990).

    Google Scholar 

  • 71.

    White, T. J., Bruns, T., Lee, S. & Taylor, J. In PCR Protocols (eds Innis, M. A. et al.) 315–322 (Academic Press, New York, 1990).

    Google Scholar 


  • Source: Ecology - nature.com

    Effects of different social experiences on emotional state in mice

    Linking microbial Sphagnum degradation and acetate mineralization in acidic peat bogs: from global insights to a genome-centric case study