in

Rapid fragmentation of microplastics by the freshwater amphipod Gammarus duebeni (Lillj.)

[adace-ad id="91168"]
  • 1.

    Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: a review. Mar. Pollut. Bull. 62, 2588–2597 (2011).

    CAS  PubMed  Google Scholar 

  • 4.

    Ballent, A., Corcoran, P. L., Madden, O., Helm, P. A. & Longstaffe, F. J. Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Mar. Pollut. Bull. 110, 383–395 (2016).

    CAS  PubMed  Google Scholar 

  • 5.

    Wagner, M. & Lambert, S. Freshwater Microplastics (Springer International Publishing, Cham, 2018).

    Google Scholar 

  • 6.

    Lechner, A. et al. The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ. Pollut. 188, 177–181 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Miller, R. Z., Watts, A. J. R., Winslow, B. O., Galloway, T. S. & Barrows, A. P. W. Mountains to the sea: river study of plastic and non-plastic microfiber pollution in the northeast USA. Mar. Pollut. Bull. 124, 245–251 (2017).

    CAS  PubMed  Google Scholar 

  • 8.

    Mani, T., Hauk, A., Walter, U. & Burkhardt-Holm, P. Microplastics profile along the Rhine River. Sci. Rep. 5, 1–7 (2015).

    Google Scholar 

  • 9.

    Castañeda, R. A., Avlijas, S., Simard, M. A. & Ricciardi, A. Microplastic pollution in St. Lawrence River sediments. Can. J. Fish. Aquat. Sci. 71, 1767–1771 (2014).

    Google Scholar 

  • 10.

    Pomeroy, C., Haggart, O., Vermaire, J. C., Herczegh, S. M. & Murphy, M. Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. Facets 2, 301–314 (2017).

    Google Scholar 

  • 11.

    Klein, S., Worch, E. & Knepper, T. P. Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany. Environ. Sci. Technol. 49, 6070–6076 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 12.

    Hurley, R., Woodward, J. & Rothwell, J. J. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat. Geosci. 11, 251–257 (2018).

    ADS  CAS  Google Scholar 

  • 13.

    Tan, Z. et al. Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with heavy metals. Chemosphere 171, 248–258 (2016).

    PubMed  Google Scholar 

  • 14.

    Leslie, H. A., Brandsma, S. H., van Velzen, M. J. M. & Vethaak, A. D. Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ. Int. 101, 133–142 (2017).

    CAS  PubMed  Google Scholar 

  • 15.

    Mani, T. et al. Repeated detection of polystyrene microbeads in the lower Rhine River. Environ. Pollut. 245, 634–641 (2019).

    CAS  PubMed  Google Scholar 

  • 16.

    Wilson, S. et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 77, 177–182 (2013).

    PubMed  Google Scholar 

  • 17.

    McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J. & Kelly, J. J. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol. 48, 11863–11871 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 18.

    Windsor, F. M., Tilley, R. M., Tyler, C. R. & Ormerod, S. J. Microplastic ingestion by riverine macroinvertebrates. Sci. Total Environ. 646, 68–74 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 19.

    Sanchez, W., Bender, C. & Porcher, J. M. Wild gudgeons (Gobio gobio) from French rivers are contaminated by microplastics: preliminary study and first evidence. Environ. Res. 128, 98–100 (2014).

    CAS  PubMed  Google Scholar 

  • 20.

    Kuśmierek, N. & Popiołek, M. Microplastics in freshwater fish from Central European lowland river (Widawa R, SW Poland). Environ. Sci. Pollut. Res. 27, 11438–11442 (2020).

    Google Scholar 

  • 21.

    Wagner, M. et al. Microplastics in freshwater ecosystems: what we know and what we need to know. Environ. Sci. Eur. 26, 58 (2014).

    Google Scholar 

  • 22.

    Scherer, C., Brennholt, N., Reifferscheid, G. & Wagner, M. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates. Sci. Rep. 7, 17006 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Aljaibachi, R. & Callaghan, A. Impact of polystyrene microplastics on Daphnia magna mortality and reproduction in relation to food availability. PeerJ 6, e4601 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Bruck, S. & Ford, A. T. Chronic ingestion of polystyrene microparticles in low doses has no effect on food consumption and growth to the intertidal amphipod Echinogammarus marinus?. Environ. Pollut. 233, 1125–1130 (2018).

    CAS  PubMed  Google Scholar 

  • 25.

    Mateos-Cárdenas, A. et al. Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). Sci. Total Environ. 689, 413–421 (2019).

    ADS  PubMed  Google Scholar 

  • 26.

    Rehse, S., Kloas, W. & Zar, C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere 153, 91–99 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 27.

    Jemec, A., Horvat, P., Kunej, U., Bele, M. & Kr, A. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environ. Pollut. 219, 201–209 (2016).

    CAS  PubMed  Google Scholar 

  • 28.

    Weber, A., Scherer, C., Brennholt, N., Reifferscheid, G. & Wagner, M. PET microplastics do not negatively affect the survival, development, metabolism and feeding activity of the freshwater invertebrate Gammarus pulex. Environ. Pollut. 234, 181–189 (2018).

    CAS  PubMed  Google Scholar 

  • 29.

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 30.

    Geyer, R., Jambeck, J. & Law, K. Production, use, and fate of all plastics ever made. Sci. Adv. 3, 25–29 (2017).

    Google Scholar 

  • 31.

    Van Sebille, E. et al. A global inventory of small floating plastic debris. Environ. Res. Lett. 10, 124006 (2015).

    ADS  Google Scholar 

  • 32.

    Dawson, A. L. et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1–8 (2018).

    Google Scholar 

  • 33.

    Jang, M., Shim, W. J., Han, G. M., Song, Y. K. & Hong, S. H. Formation of microplastics by polychaetes (Marphysa sanguinea) inhabiting expanded polystyrene marine debris. Mar. Pollut. Bull. 131, 365–369 (2018).

    CAS  PubMed  Google Scholar 

  • 34.

    Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 35.

    Consolandi, G., Ford, A. T. & Bloor, M. C. Feeding behavioural studies with freshwater Gammarus spp.: the importance of a standardised methodology. In Reviews of Environmental Contamination and Toxicology 1–41 (2019).

  • 36.

    Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: a review. Environ. Pollut. 178, 483–492 (2013).

    CAS  PubMed  Google Scholar 

  • 37.

    Redondo-Hasselerharm, P. E., Falahudin, D., Peeters, E. T. H. M. & Koelmans, A. A. Microplastic effect thresholds for freshwater benthic macroinvertebrates. Environ. Sci. Technol. 52, 2278–2286 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Blarer, P. & Burkhardt-holm, P. Microplastics affect assimilation efficiency in the freshwater amphipod Gammarus fossarum. Environ. Sci. Pollut. Res. 23, 23522–23532 (2016).

    CAS  Google Scholar 

  • 39.

    Straub, S., Hirsch, P. E. & Burkhardt-Holm, P. Biodegradable and petroleum-based microplastics do not differ in their ingestion and excretion but in their biological effects in a freshwater invertebrate Gammarus fossarum. Int. J. Environ. Res. Public Health 14, 774 (2017).

    PubMed Central  Google Scholar 

  • 40.

    Catarino, A. I., Frutos, A. & Henry, T. B. Use of fluorescent-labelled nanoplastics (NPs) to demonstrate NP absorption is inconclusive without adequate controls. Sci. Total Environ. 670, 915–920 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 41.

    Schür, C. et al. When fluorescence is not a particle: the tissue translocation of microplastics in daphnia magna seems an artifact. Environ. Toxicol. Chem. 38, 1495–1503 (2019).

    PubMed  Google Scholar 

  • 42.

    Luo, H. et al. Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate to Chlorella vulgaris. Sci. Total Environ. 678, 1–9 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 43.

    Gewert, B., Plassmann, M. M. & Macleod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 17, 1513–1521 (2015).

    CAS  PubMed  Google Scholar 

  • 44.

    ter Halle, A. et al. Understanding the fragmentation pattern of marine plastic debris. Environ. Sci. Technol. 50, 5668–5675 (2016).

    ADS  PubMed  Google Scholar 

  • 45.

    Weinstein, J. E., Crocker, B. K. & Gray, A. D. From macroplastic to microplastic: degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ. Toxicol. Chem. 35, 1632–1640 (2016).

    CAS  PubMed  Google Scholar 

  • 46.

    Zhu, L., Zhao, S., Bittar, T. B., Stubbins, A. & Li, D. Photochemical dissolution of buoyant microplastics to dissolved organic carbon: Rates and microbial impacts. J. Hazard. Mater. 383, 121065 (2020).

    CAS  PubMed  Google Scholar 

  • 47.

    Song, Y. K. et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci. Technol. 51, 4368–4376 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 48.

    Hakkarainen, M. & Albertsson, A. C. Environmental degradation of polyethylene. Adv. Polym. Sci. 169, 177–199 (2004).

    CAS  Google Scholar 

  • 49.

    Andrady, A. L., Pegram, J. E. & Song, Y. Studies on enhanced degradable plastics. II. Weathering of enhanced photodegradable polyethylenes under marine and freshwater floating exposure. J. Environ. Polym. Degrad. 1, 117–126 (1993).

    CAS  Google Scholar 

  • 50.

    Porter, A., Smith, K. E. & Lewis, C. The sea urchin Paracentrotus lividus as a bioeroder of plastic. Sci. Total Environ. 693, 133621 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 51.

    Cau, A. et al. Benthic crustacean digestion can modulate environmental fate of microplastics in the deep sea. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.9b07705 (2020).

    Article  PubMed  Google Scholar 

  • 52.

    Macneil, C., Dick, J. T. A. & Elwood, R. W. The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): problems and perspectives concerning the functional feeding group concept. Biol. Rev. 72, 349–364 (1997).

    Google Scholar 

  • 53.

    Willoughby, L. G. & Sutcliffe, D. W. Experiments on feeding and growth of the amphipod Gammarus pulex (L.) related to its distribution in the River Duddon. Freshw. Biol. 6, 577–586 (1976).

    CAS  Google Scholar 

  • 54.

    Agrawal, V. P. Feeding appendages and the digestive system of Gammarus pulex. Acta Zool. 46, 67–81 (1965).

    CAS  Google Scholar 

  • 55.

    Watling, L. Functional morphology of the amphipod mandible. J. Nat. Hist. 27, 837–849 (1993).

    Google Scholar 

  • 56.

    Steele, D. H. & Steele, V. J. Biting mechanism of the amphipod anonyx (Crustacea: Amphipoda: Lysianassoidea). J. Nat. Hist. 27, 851–860 (1993).

    Google Scholar 

  • 57.

    Mayer, G., Maier, G., Maas, A. & Waloszek, D. Mouthpart morphology of Gammarus roeselii compared to a successful invader, Dikerogammarus villosus (Amphipoda). J. Crustac. Biol. 29, 161–174 (2009).

    Google Scholar 

  • 58.

    Mekhanikova, I. V. Morphology of mandible and lateralia in six endemic amphipods (Amphipoda, Gammaridea) from Lake Baikal, in relation to feeding. Crustaceana 83, 865–887 (2010).

    Google Scholar 

  • 59.

    Cassone, B. J., Grove, H. C., Elebute, O., Villanueva, S. M. P. & LeMoine, C. M. R. Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella. Proc. R. Soc. B Biol. Sci. 287, 20200112 (2020).

    Google Scholar 

  • 60.

    Besseling, E. et al. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ. Sci. Technol. 48, 12336–12343 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Bhattacharya, P., Lin, S., Turner, J. P. & Ke, P. C. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J. Phys. Chem. 114, 16556–16561 (2010).

    CAS  Google Scholar 

  • 62.

    Sendra, M., Staf, E., Pilar, M. & Moreno-Garrido, I. Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum. Environ. Pollut. 249, 610–619 (2019).

    CAS  PubMed  Google Scholar 

  • 63.

    van Weert, S., Redondo-Hasselerharm, P. E., Diepens, N. J. & Koelmans, A. A. Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes. Sci. Total Environ. 654, 1040–1047 (2019).

    ADS  PubMed  Google Scholar 

  • 64.

    Lian, J. et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). J. Hazard. Mater. 385, 121620 (2020).

    PubMed  Google Scholar 

  • 65.

    Bosker, T., Bouwman, L. J., Brun, N. R., Behrens, P. & Vijver, M. G. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226, 774–781 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 66.

    Cui, R., Kim, S. W. & An, Y. J. Polystyrene nanoplastics inhibit reproduction and induce abnormal embryonic development in the freshwater crustacean Daphnia galeata. Sci. Rep. 7, 1–10 (2017).

    Google Scholar 

  • 67.

    Rist, S., Baun, A., Almeda, R. & Hartmann, N. B. Ingestion and effects of micro- and nanoplastics in blue mussel (Mytilus edulis) larvae. Mar. Pollut. Bull. 140, 423–430 (2019).

    CAS  PubMed  Google Scholar 

  • 68.

    Hardesty, B. D. et al. Using numerical model simulations to improve the understanding of micro-plastic distribution and pathways in the marine environment. Front. Mar. Sci. 4, 1–9 (2017).

    Google Scholar 

  • 69.

    Kalčíková, G., Alič, B., Skalar, T., Bundschuh, M. & Gotvajn, A. Ž. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater. Chemosphere 188, 25–31 (2017).

    ADS  PubMed  Google Scholar 

  • 70.

    Fendall, L. S. & Sewell, M. A. Contributing to marine pollution by washing your face: microplastics in facial cleansers. Mar. Pollut. Bull. 58, 1225–1228 (2009).

    CAS  PubMed  Google Scholar 

  • 71.

    Schmitz, E. H. & Scherrey, P. M. Digestive anatomy of Hyalella azteca (Crustacea, Amphipoda). J. Morphol. 100, 91–100 (1983).

    Google Scholar 

  • 72.

    Monk, D. C. The digestion of cellulose and other dietary components, and pH of the gut in the amphipod Gammarus pulex (L.). Freshw. Biol. 7, 431–440 (1977).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Study: A plunge in incoming sunlight may have triggered “Snowball Earths”

    A comparison of baleen whale density estimates derived from overlapping satellite imagery and a shipborne survey