in

Reanalysis of putative ovarian follicles suggests that Early Cretaceous birds were feeding not breeding

  • 1.

    Zheng, X. et al. Preservation of ovarian follicles reveals early evolution of avian reproductive behaviour. Nature 495, 507–511 (2013).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Mayr, G. & Manegold, A. Can ovarian follicles fossilize?. Nature 499, E1 (2013).

    ADS  CAS  Article  Google Scholar 

  • 3.

    O’Connor, J., Zheng, X. & Zhou, Z. Reply to “Can ovarian follicles fossilize?”. Nature 499, E1–E2 (2013).

    ADS  Article  CAS  Google Scholar 

  • 4.

    Varricchio, D. J. & Jackson, F. D. Reproduction in Mesozoic birds and evolution of the modern avian reproductive mode. Auk: Ornithol. Adv. 133, 654–684 (2016).

    Article  Google Scholar 

  • 5.

    O’Connor, J. K., Wang, M., Zheng, X. T., Wang, X. L. & Zhou, Z. H. The histology of two female Early Cretaceous birds. Vertebrata PalAsiatica 52, 112–128 (2014).

    Google Scholar 

  • 6.

    O’Connor, J. K., Zheng, X., Wang, X., Wang, Y. & Zhou, Z. Ovarian follicles shed new light on dinosaur reproduction during the transition towards birds. Nat. Sci. Rev. 1, 15–17 (2013).

    Article  Google Scholar 

  • 7.

    Wang, Y. et al. A new Jehol enantiornithine bird with three-dimensional preservation and ovarian follicles. J. Vertebr. Paleontol. 36, e1054496 (2016).

    Article  Google Scholar 

  • 8.

    Zheng, X. et al. Exceptional preservation of soft tissue in a new specimen of Eoconfuciusornis and its biological implications. Natl. Sci. Rev. 4, 441–452 (2017).

    CAS  Article  Google Scholar 

  • 9.

    Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).

    Article  CAS  Google Scholar 

  • 10.

    O’Connor, J. & Zhou, Z. Early evolution of the biological bird: perspectives from new fossil discoveries in China. J. Ornithol. 156, 333–342 (2015).

    Article  Google Scholar 

  • 11.

    Reisdorf, A. G. & Wuttke, M. Re-evaluating Moodie’s opisthotonic-posture hypothesis in fossil vertebrates part I: Reptiles—The taphonomy of the bipedal dinosaurs Compsognathus longipes and Juravenator starki from the Solnhofen Archipelago (Jurassic, Germany). Palaeobiodiversity and Palaeoenvironments 92, 119–168 (2012).

    Article  Google Scholar 

  • 12.

    Bailleul, A. M. et al. Confirmation of ovarian follicles in an enantiornithine (Aves) from the Jehol biota using soft tissue analyses. Commun. Biol. 3, 1–8 (2020).

    Article  Google Scholar 

  • 13.

    Saitta, E. T. & Vinther, J. A perspective on the evidence for keratin protein preservation in fossils: An issue of replication versus validation. Palaeontologia Electronica 23.3.2E, 1–30 (2019).

    Google Scholar 

  • 14.

    Brasier, M., McLoughlin, N., Green, O. & Wacey, D. A fresh look at the fossil evidence for early Archaean cellular life. Philosophical Transactions of the Royal Society B: Biological Sciences 361, 887–902 (2006).

    CAS  Article  Google Scholar 

  • 15.

    Saitta, E. T., Rogers, C. S., Brooker, R. A. & Vinther, J. Experimental taphonomy of keratin: A structural analysis of early taphonomic changes. Palaios 32, 647–657 (2017).

    ADS  Article  Google Scholar 

  • 16.

    Saitta, E. T. et al. Preservation of feather fibers from the Late Cretaceous dinosaur Shuvuuia deserti raises concern about immunohistochemical analyses on fossils. Org. Geochem. 125, 142–151 (2018).

    CAS  Article  Google Scholar 

  • 17.

    Schweitzer, M. H. et al. Beta-keratin specific immunological reactivity in feather-like structures of the Cretaceous Alvarezsaurid, Shuvuuia deserti. J. Exp. Zool. 285, 146–157 (1999).

    CAS  Article  Google Scholar 

  • 18.

    O’Connor, W. N. & Valle, S. A combination Verhoeffs elastic and Masson’s trichrome stain for routine histology. Stain Technol. 57, 207–210 (1982).

    Article  Google Scholar 

  • 19.

    Suvarna, K. S., Layton, C. & Bancroft, J. D. Bancroft’s Theory and Practice of Histological Techniques E-Book (Elsevier Health Sciences, Amsterdam, 2018).

    Google Scholar 

  • 20.

    Flint, M. H. & Lyons, M. F. The effect of heating and denaturation on the staining of collagen by the Masson trichrome procedure. Histochem. J. 7, 547–555 (1975).

    CAS  Article  Google Scholar 

  • 21.

    Alers, J. C., Krijtenburg, P. J., Vissers, K. J. & van Dekken, H. Effect of bone decalcification procedures on DNA in situ hybridization and comparative genomic hybridization: EDTA is highly preferable to a routinely used acid decalcifier. J. Histochem. Cytochem. 47, 703–709 (1999).

    CAS  Article  Google Scholar 

  • 22.

    Standen, G. et al. Differentiation of German Tertiary brown coal lithotypes (‘amorphous’ and ‘woody’ kerogens) using ruthenium tetroxide oxidation and pyrolysis-gc-ms. Fuel 71, 31–36 (1992).

    CAS  Article  Google Scholar 

  • 23.

    Stankiewicz, B. A. et al. Molecular taphonomy of arthropod and plant cuticles from the Carboniferous of North America: Implications for the origin of kerogen. J. Geol. Soc. 155, 453–462 (1998).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Grimes, S. T. et al. Understanding fossilization: Experimental pyritization of plants. Geology 29, 123–126 (2001).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Leng, Q. & Yang, H. Pyrite framboids associated with the Mesozoic Jehol Biota in northeastern China: Implications for microenvironment during early fossilization. Prog. Nat. Sci. 13, 206–212 (2003).

    Google Scholar 

  • 26.

    Zhou, Z. The Jehol Biota, an Early Cretaceous terrestrial Lagerstätte: New discoveries and implications. Natl. Sci. Rev. 1, 543–559 (2014).

    Article  Google Scholar 

  • 27.

    Suk, D., Peacor, D. R. & Van der Voo, R. Replacement of pyrite framboids by magnetite in limestone and implications for palaeomagnetism. Nature 345, 611–613 (1990).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Wang, B. O., Zhao, F., Zhang, H., Fang, Y. & Zheng, D. Widespread pyritization of insects in the Early Cretaceous Jehol Biota. Palaios 27, 707–711 (2012).

    ADS  Article  Google Scholar 

  • 29.

    Mccobb, L. M., Briggs, D. E., Evershed, R. P., Hall, A. R. & Hall, R. A. Preservation of fossil seeds from a 10th century AD cess pit at Coppergate, York. J. Archaeol. Sci. 28, 929–940 (2001).

    Article  Google Scholar 

  • 30.

    Arena, D. A. Exceptional preservation of plants and invertebrates by phosphatization, Riversleigh, Australia. Palaios 23, 495–502 (2008).

    ADS  Article  Google Scholar 

  • 31.

    Viney, M., Mustoe, G. E., Dillhoff, T. A. & Link, P. K. The Bruneau Woodpile: A miocene phosphatized fossil wood locality in Southwestern Idaho, USA. Geosciences 7, 82 (2017).

    ADS  Article  CAS  Google Scholar 

  • 32.

    Sharma, R., Kumar, V. & Kumar, R. Distribution of phytoliths in plants: A review. Geol. Ecol. Landsc. 3, 123–148 (2019).

    Article  Google Scholar 

  • 33.

    Orr, P. J., Briggs, D. E. & Kearns, S. L. Cambrian Burgess Shale animals replicated in clay minerals. Science 281, 1173–1175 (1998).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Butterfield, N. J., Balthasar, U. W. E. & Wilson, L. A. Fossil diagenesis in the Burgess Shale. Palaeontology 50, 537–543 (2007).

    Article  Google Scholar 

  • 35.

    Page, A., Gabbott, S. E., Wilby, P. R. & Zalasiewicz, J. A. Ubiquitous Burgess Shale–style “clay templates” in low-grade metamorphic mudrocks. Geology 36, 855–858 (2008).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Schweitzer, M. H. et al. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science 324, 626–631 (2009).

    ADS  CAS  Article  Google Scholar 

  • 37.

    Saitta, E. T. et al. Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities. eLIFE 8, e46205 (2019).

    Article  Google Scholar 

  • 38.

    McLoughlin, S. & Pott, C. Plant mobility in the Mesozoic: Disseminule dispersal strategies of Chinese and Australian Middle Jurassic to Early Cretaceous plants. Palaeogeogr. Palaeoclimatol. Palaeoecol. 515, 47–69 (2019).

    Article  Google Scholar 

  • 39.

    Sun, G., Zheng, S., Dilcher, D., Wang, Y. & Mei, S. Early Angiosperms and their Associated Plants from Western Liaoning, China (Science and Technology Education Publishing House, Shanghai, 2001).

    Google Scholar 

  • 40.

    Zheng, X. et al. Fossil evidence of avian crops from the Early Cretaceous of China. Proc. Natl. Acad. Sci. 108, 15904–15907 (2011).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Kaye, T. G. et al. Laser-stimulated fluorescence in paleontology. PLoS ONE 10(5), e0125923 (2015).

    Article  CAS  Google Scholar 

  • 42.

    Wang, X. L. et al. Basal paravian functional anatomy illuminated by high-detail body outline. Nat. Commun. 8, 14576 (2017).

    ADS  Article  Google Scholar 

  • 43.

    Herrera, C. M. Seed dispersal by animals: A role in angiosperm diversification?. Am. Nat. 133, 309–322 (1989).

    Article  Google Scholar 

  • 44.

    Leng, Q. & Friis, E. M. Sinocarpus decussatus gen. et sp. nov., a new angiosperm with basally syncarpous fruits from the Yixian Formation of Northeast China. Plant Systemat. Evol. 241, 77–88 (2003).

    Article  Google Scholar 

  • 45.

    Wu, S. A preliminary study of the Jehol Flora from Western Liaoning. Palaeoworld 11, 7–57 (1999).

    Google Scholar 

  • 46.

    O’Connor, J. K. The trophic habits of early birds. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513, 178–195 (2019).

    Article  Google Scholar 

  • 47.

    Mayr, G. Late Oligocene mousebird converges on parrots in skull morphology. Ibis 155, 384–396 (2013).

    Article  Google Scholar 

  • 48.

    Zhou, Z. & Zhang, F. A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature 418, 405–409 (2002).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Briggs, D. E. & Williams, S. H. The restoration of flattened fossils. Lethaia 14, 157–164 (1981).

    Article  Google Scholar 

  • 50.

    Farjon, A. A Handbook of the World’s Conifers 1 (Brill, Boston, 2010).

    Google Scholar 

  • 51.

    Mayr, G. Avian Evolution: The Fossil Record of Birds and its Paleobiological Significance (Wiley-Blackwell, New York, 2017).

    Google Scholar 

  • 52.

    Miller, C. V. et al. Disassociated rhamphotheca of fossil bird Confuciusornis informs early beak reconstruction, stress regime, and developmental patterns. Commun. Biol. 3, 519 (2020).

    Article  Google Scholar 

  • 53.

    Elzanowski, A., Peters, D. S. & Mayr, G. Cranial morphology of the Early Cretaceous bird Confuciusornis. J. Vertebr. Paleontol. 38, e1439832 (2018).

    Article  Google Scholar 

  • 54.

    Fuster, F. & Traveset, A. Evidence for a double mutualistic interaction between a lizard and a Mediterranean gymnosperm Ephedra fragilis. . AoB Plants 1, 2. https://doi.org/10.1093/aobpla/plz001 (2019).

    Article  Google Scholar 

  • 55.

    Rothwell, G. & Holt, B. Fossils and phenology in the evolution of Ginkgo biloba. In Ginkgo biloba, a global treasure (eds Hori, T. et al.) 223–230 (Springer, Berlin, 1997).

    Google Scholar 

  • 56.

    Valido, A. & Olesen, J. M. The importance of lizards as frugivores and seed dispersers. In Seed Dispersal: Theory and Its Application in a Changing World (eds Dennis, A. J. et al.) 124–147 (CAB International, Wallingford, 2007).

    Google Scholar 

  • 57.

    Zhou, S., Zhou, Z. & O’Connor, J. K. Anatomy of the basal ornithuromorph bird Archaeorhynchus spathula from the Early Cretaceous of Liaoning, China. J. Vertebr. Paleontol. 33, 141–152 (2013).

    CAS  Article  Google Scholar 

  • 58.

    O’Connor, J. K. & Zhou, Z. The evolution of the modern avian digestive system: Insights from paravian fossils from the Yanliao and Jehol biotas. Palaeontology 84, 13–27 (2020).

    Article  Google Scholar 

  • 59.

    O’Connor, J. et al. First report of gastroliths in the Early Cretaceous basal bird Jeholornis. Cretac. Res. 84, 200–208 (2018).

    Article  Google Scholar 

  • 60.

    Zhou, Z. & Zhang, F. Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Can. J. Earth Sci. 40, 731–747 (2003).

    ADS  Article  Google Scholar 

  • 61.

    Gionfriddo, J. P. & Best, L. B. Grit use by birds. Curr. Ornithol. 19, 89–148 (1999).

    Article  Google Scholar 

  • 62.

    Chiappe, L. M. & Meng, Q. Birds of Stone: Chinese Avian Fossils from the Age of Dinosaurs (Johns Hopkins University Press, Baltimore, 2016).

    Google Scholar 


  • Source: Ecology - nature.com

    Transatlantic research and study partnership continues amid the pandemic

    Transcriptomic and life history responses of the mayfly Neocloeon triangulifer to chronic diel thermal challenge