in

Relationships between a common Caribbean corallivorous snail and protected area status, coral cover, and predator abundance

  • 1.

    Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Death, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA 109, 1–5 (2012).

    Article  Google Scholar 

  • 3.

    Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (World Resources Institute, Washington, D.C., 2011).

    Google Scholar 

  • 4.

    Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311, 98–101 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 5.

    McLeod, E., Salm, R., Green, A. & Almany, J. Designing marine protected area networks to address the impacts of climate change. Front. Ecol. Environ. 7, 362–370 (2009).

    Article  Google Scholar 

  • 6.

    McClanahan, T. R., Graham, N. A. J., Calnan, J. M. & MacNeil, M. A. Toward pristine biomass: reef fish recovery in coral reef marine protected areas in Kenya. Ecol. Appl. 17, 1055–1067 (2007).

    PubMed  Article  Google Scholar 

  • 7.

    Stockwell, B., Jadloc, C. R. L., Abesamis, R. A., Alcala, A. C. & Russ, G. R. Trophic and benthic responses to no-take marine reserve protection in the Philippines. Mar. Ecol. Prog. Ser. 389, 1–15 (2009).

    ADS  Article  Google Scholar 

  • 8.

    Rotjan, R. D. & Lewis, S. M. Impact of coral predators on tropical reefs. Mar. Ecol. Prog. Ser. 367, 73–91 (2008).

    ADS  Article  Google Scholar 

  • 9.

    Shaver, E. C., Burkepile, D. E. & Silliman, B. R. Local management actions can increase coral resilience to thermally-induced bleaching. Nat Ecol Evol 2, 1075–1079 (2018).

    PubMed  Article  Google Scholar 

  • 10.

    Hoeksema, B. W., Scott, C. & True, J. D. Dietary shift in corallivorous Drupella snails following a major bleaching event at Koh Tao Gulf of Thailand. Coral Reefs 32, 423–428 (2013).

    ADS  Article  Google Scholar 

  • 11.

    Moerland, M. S., Scott, C. M. & Hoeksema, B. W. Prey selection of corallivorous muricids at Koh Tao (Gulf of Thailand) four years after a major coral bleaching event. Contrib. Zool. 85, 291–309 (2019).

    Article  Google Scholar 

  • 12.

    Kayal, M. et al. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS ONE 7, e47363 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Boucher, L. M. Coral predation by muricid gastropods of the genus Drupella at Enewetak Marshall Islands. Bull. Mar. Sci. 38, 9–11 (1986).

    Google Scholar 

  • 14.

    Moyer, J. T., Emerson, W. K. & Ross, M. Massive destruction of scleractinian corals by the muricid gastropod, Drupella Japan and the Philippines. Nautilus 96, 69–82 (1982).

    Google Scholar 

  • 15.

    McClanahan, T. R. Coral-eating snail Drupella cornus population increases in Kenyan coral reef lagoons. Mar. Ecol. Prog. Ser. 115, 131–138 (1994).

    ADS  Article  Google Scholar 

  • 16.

    Knowlton, N., Lang, J. C. & Keller, B. D. Case study of natural population collapse: post-hurricane predation on Jamaican staghorn corals. Smithson. Contrib. Mar. Sci. 1–3, 1–25 (1990).

    Article  Google Scholar 

  • 17.

    Grober-Dunsmore, R., Bonito, V. & Frazer, T. K. Potential inhibitors to recovery of Acropora palmata populations in St. John, US Virgin Islands. Mar. Ecol. Prog. Ser. 321, 123–132 (2006).

    ADS  Article  Google Scholar 

  • 18.

    Brodie, J., Fabricius, K., Death, G. & Okaji, K. Are increased nutrient inputs responsible for more outbreaks of crown-of-thorns starfish? An appraisal of the evidence. Mar. Pollut. Bull. 51, 266–278 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    McClanahan, T. R. Kenyan coral reef-associated gastropod fauna: a comparison between protected and unprotected reefs. Mar. Ecol. Prog. Ser. 53, 11–20 (1989).

    ADS  Article  Google Scholar 

  • 20.

    Dulvy, N. K., Freckleton, R. P. & Polunin, N. V. C. Coral reef cascades and the indirect effects of predator removal by exploitation. Ecol. Lett. 7, 410–416 (2004).

    Article  Google Scholar 

  • 21.

    Sweatman, H. No-take reserves protect coral reefs from predatory starfish. Curr. Biol. 18, 598–599 (2008).

    Article  CAS  Google Scholar 

  • 22.

    Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Aronson, R. B. & Precht, W. F. White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460, 25–38 (2001).

    Article  Google Scholar 

  • 24.

    Jackson, J. B. C., Donovan, M. K., Cramer, K. L. & Lam, W. Status and Trends of Caribbean Coral Reefs: 1970-2012. Global Coral Reef Monitoring Network, IUCN, Gland. Switz. (2014).

  • 25.

    Williams, D. E., Miller, M. W., Bright, A. J. & Cameron, C. M. Removal of corallivorous snails as a proactive tool for the conservation of acroporid corals. PeerJ 2, e680 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Sutherland, K. P., Shaban, S., Joyner, J. L., Porter, J. W. & Lipp, E. K. Human pathogen shown to cause disease in the threatened eklhorn coral Acropora palmata. PLoS ONE 6, e23468 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Gignoux-Wolfsohn, S. A., Marks, C. J. & Vollmer, S. V. White Band Disease transmission in the threatened coral Acropora cervicornis. Sci. Rep 2, 804 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Shaver, E. C. et al. Effects of predation and nutrient enrichment on the success and microbiome of a foundational coral. Ecology 98, 830–938 (2017).

    PubMed  Article  Google Scholar 

  • 29.

    Williams, D. E. & Miller, M. W. Coral disease outbreak: pattern, prevalence and transmission in Acropora cervicornis. Mar. Ecol. Prog. Ser. 301, 119–128 (2005).

    ADS  Article  Google Scholar 

  • 30.

    Baums, I. B., Miller, M. W. & Szmant, A. M. Ecology of a corallivorous gastropod, Coralliophila abbreviata, on two scleractinian hosts, I: population structure of snails and corals. Mar. Biol. 142, 1083–1091 (2003).

    Article  Google Scholar 

  • 31.

    Baums, I. B., Miller, M. W. & Szmant, A. M. Ecology of a corallivorous gastropod, Coralliophila abbreviata, on two seleractinian hosts. II. Feeding, respiration and growth. Mar. Biol. 142, 1093–1101 (2003).

    Article  Google Scholar 

  • 32.

    National Marine Fisheries Service. Recovery Plan: Elkhorn coral (Acropora palmata) and staghorn coral (A. cervicornis). https://www.fisheries.noaa.gov/resource/document/recovery-plan-elkhorn-coral-acropora-palmata-and-staghorn-coral-cervicornis (2015).

  • 33.

    Clements, C. S. & Hay, M. E. Overlooked coral predators suppress foundation species as reefs degrade. Ecol. Appl. 28, 1673–1682 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Sharp, W. C. & Delgado, G. A. Predator-prey interactions between the corallivorous snail Coralliophila abbreviata and the carnivorous deltoid rock snail Thais deltoidea. Biol. Bull. 229, 129–133 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Humann, P. & Deloach, N. Reef coral identification: Florida Caribbean Bahamas (New World Publications Inc, Jacksonville, 2014).

    Google Scholar 

  • 36.

    National Marine Sanctuaries. Florida Keys National Marine Sanctuary Regulations. National Oceanic and Atmospheric Administration. https://floridakeys.noaa.gov/regs/ (2015).

  • 37.

    Bartholomew, A. et al. Influence of marine reserve size and boundary length on the initial response of exploited reef fishes in the Florida Keys National Marine Sanctuary USA. Landsc. Ecol. 23, 55–65 (2008).

    Article  Google Scholar 

  • 38.

    Kramer, K. L. & Heck, K. L. Top-down trophic shifts in Florida Keys patch reef marine protected areas. Mar. Ecol. Prog. Ser. 349, 111–123 (2007).

    ADS  Article  Google Scholar 

  • 39.

    Miller, M. W. Corallivorous snail removal: evaluation of impact on Acropora palmata. Coral Reefs 19, 293–295 (2001).

    Article  Google Scholar 

  • 40.

    Johnston, L. & Miller, M. W. Variation in life-history traits of the corallivorous gastropod Coralliophila abbreviata on three coral hosts. Mar. Biol. 150, 1215–1225 (2006).

    Article  Google Scholar 

  • 41.

    Lutes, D. L. & Szmant, A. M. Evidence for an indirect link between the Florida Keys spiny lobster fishery and the decline of Acropora palmata. Proceeding in Benthic Ecology Meeting (2005).

  • 42.

    Randall, J. E. Food habits of reef fishes of the West Indies. Stud. Trop. Oceanogr. 5, 665–847 (1967).

    Google Scholar 

  • 43.

    Goldberg, W. M. A note on the feeding behavior of the snapping shrimp Synalpheus Fritzmuelleri Coutière (Decapoda, Alpheidae). Crustaceana 21, 318–320 (1971).

    Article  Google Scholar 

  • 44.

    Ayotte, P., Mccoy, K., Williams, I. & Zamzow, J. Coral Reef Ecosystem Division Standard Operating Procedures: Data Collection for Rapid Ecological Assessment Fish Surveys. https://repository.library.noaa.gov/view/noaa/702 (2011).

  • 45.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, Berlin, 2002).

    Google Scholar 

  • 46.

    R Core Team. foreign: Read Data Stored by ‘Minitab’, ‘S’, ‘SAS’, ‘SPSS’, ‘Stata’, ‘Systat’, ‘Weka’, ‘dBase’, … R package version 0.8–78. https://CRAN.R-project.org/package=foreign (2020).

  • 47.

    R Core Team. R: A Language and Environment for Statistical Computing. (2020).

  • 48.

    Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    ADS  Article  Google Scholar 

  • 49.

    Office of National Marine Sanctuaries. Florida Keys National Marine Sanctuary Condition Report 2011. https://sanctuaries.noaa.gov/science/condition/fknms/ (2011).

  • 50.

    Roberts, C. M. & Hawkins, J. E. How small can a marine reserve be and still be effective?. Coral Reefs 16, 150 (1997).

    ADS  Article  Google Scholar 

  • 51.

    Cox, C. Monitoring Caribbean Spiny Lobsters in the Florida Keys National Marine Sanctuary, 1997–2002. Florida Keys National Marine Sanctuary. (2006).

  • 52.

    Cox, C. & Hunt, J. H. Change in size and abundance of Caribbean spiny lobsters Panulirus argus in a marine reserve in the Florida Keys National Marine Sanctuary, USA. Mar. Ecol. Prog. Ser. 294, 227–239 (2005).

    ADS  Article  Google Scholar 

  • 53.

    Mumby, P. J. et al. Trophic cascade facilitates coral recruitment in a marine reserve. Proc. Natl. Acad. Sci. USA 104, 8362–8367 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 54.

    Ott, B. & Lewis, J. B. The importance of the gastropod Coralliophila abbreviata (Lamarck) and the polychaete Hermodice carunculata (Pallas) as coral reef predators. Can. J. Zool. 50, 1651–1656 (1972).

    Article  Google Scholar 

  • 55.

    Cumming, R. L. Predation on reef-building corals: multiscale variation in the density of three corallivorous gastropods Drupella spp.. Coral Reefs 18, 147–157 (1999).

    Article  Google Scholar 

  • 56.

    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. U.S.A. 106, 22341–22345 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts

    Geologists raise the speed limit for how fast continental crust can form