in

Repellent, oviposition-deterrent, and insecticidal activity of the fungal pathogen Colletotrichum fioriniae on Drosophila suzukii (Diptera: Drosophilidae) in highbush blueberries

  • 1.

    Walsh, D. B. et al. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manag 2, G1–G7 (2011).

    Google Scholar 

  • 2.

    Hauser, M. A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag. Sci. 67, 1352–1357 (2011).

    CAS  PubMed  Google Scholar 

  • 3.

    Asplen, M. K. et al. Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. J. Pest. Sci. 88, 469–494 (2015).

    Google Scholar 

  • 4.

    Arnó, J., Solà, M., Riudavets, J. & Gabarra, R. Population dynamics, non-crop hosts, and fruit susceptibility of Drosophila suzukii in Northeast Spain. J. Pest. Sci. 89, 713–723 (2016).

    Google Scholar 

  • 5.

    Keesey, I. W., Knaden, M. & Hansson, B. S. Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. J. Chem. Ecol. 41, 121–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Karageorgi, M. et al. Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest Drosophila suzukii. Curr. Biol. 27, 847–853 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Lee, J. C. et al. The susceptibility of small fruits and cherries to the spotted-wing drosophila Drosophila suzukii. Pest Manag. Sci. 67, 1358–1367 (2011).

    CAS  PubMed  Google Scholar 

  • 8.

    Raffa, K. F., Bonello, P. & Orrock, J. L. Why do entomologists and plant pathologists approach trophic relationships so differently? Identifying biological distinctions to foster synthesis. New Phytol. 225, 609–620 (2020).

    PubMed  Google Scholar 

  • 9.

    Scheidler, N. H., Liu, C., Hamby, K. A., Zalom, F. G. & Syed, Z. Volatile codes: Correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci. Rep. 5, 1–13 (2015).

    Google Scholar 

  • 10.

    Hamm, C. A. et al. Wolbachia do not live by reproductive manipulation alone: Infection polymorphism in Drosophila suzukii and D Subpulchrella. Mol. Ecol. 23, 4871–4885 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Cha, D. H. et al. Behavioral evidence for contextual olfactory-mediated avoidance of the ubiquitous phytopathogen Botrytis cinerea by Drosophila suzukii. Insect Sci. 27, 771–779 (2019).

    PubMed  Google Scholar 

  • 12.

    Bellutti, N. et al. Dietary yeast affects preference and performance in Drosophila suzukii. J. Pest. Sci. 91, 651–660 (2018).

    Google Scholar 

  • 13.

    Hamby, K. A., Hernández, A., Boundy-Mills, K. & Zalom, F. G. Associations of yeasts with spotted-wing drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries. Appl. Environ. Microbiol. 78, 4869–4873 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Mori, B. A. et al. Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J. Appl. Ecol. 54, 170–177 (2017).

    Google Scholar 

  • 15.

    Goodhue, R. E., Bolda, M., Farnsworth, D., Williams, J. C. & Zalom, F. G. Spotted wing drosophila infestation of California strawberries and raspberries: Economic analysis of potential revenue losses and control costs. Pest Manag. Sci. 67, 1396–1402 (2011).

    CAS  PubMed  Google Scholar 

  • 16.

    Barata, A., Malfeito-Ferreira, M. & Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 153, 243–259 (2012).

    CAS  PubMed  Google Scholar 

  • 17.

    Cloonan, K. R., Abraham, J., Angeli, S., Syed, Z. & Rodriguez-Saona, C. Advances in the chemical ecology of the spotted wing drosophila (Drosophila suzukii) and its Applications. J. Chem. Ecol. 44, 922–939 (2018).

    CAS  PubMed  Google Scholar 

  • 18.

    Cloonan, K. R. et al. Laboratory and field evaluation of host-related foraging odor-cue combinations to attract Drosophila suzukii (Diptera: Drosophilidae). J. Econ. Entomol. 112, 2850–2860 (2019).

    PubMed  Google Scholar 

  • 19.

    Waller, T. J., Vaiciunas, J., Constantelos, C. & Oudemans, P. V. Evidence that blueberry floral extracts influence secondary conidiation and appressorial formation of Colletotrichum fioriniae. Phytopathology 108, 561–567 (2018).

    PubMed  Google Scholar 

  • 20.

    Pszczółkowska, A. & Okorski, A. First report of anthracnose disease caused by Colletotrichum fioriniae on blueberry in western Poland. Plant. Dis. 100, 21–67 (2016).

    Google Scholar 

  • 21.

    Wharton, P. & Diéguez-Uribeondo, J. The biology of Colletotrichum acutatum. An del Jardín Botánico Madrid 61, 3–22 (2004).

    Google Scholar 

  • 22.

    Peres, N. A., Timmer, L. W., Adaskaveg, J. E. & Correll, J. C. Lifestyles of Colletotrichum acutatum. Plant Dis. 89, 784–796 (2005).

    CAS  PubMed  Google Scholar 

  • 23.

    Polashock, J. J., Caruso, F. L., Averill, A. L. & Schilder, A. C. Compendium of Bluberry, Cranberry, and Lingonberry Diseases and Pests (APS Publications, St. Paul, MN, 2017).

    Google Scholar 

  • 24.

    Wharton, P. S. & Schilder, A. C. Novel infection strategies of Colletotrichum acutatum on ripe blueberry fruit. Plant Pathol. 57, 122–134 (2008).

    Google Scholar 

  • 25.

    Verma, N., MacDonald, L. & Punja, Z. K. Inoculum prevalence, host infection and biological control of Colletotrichum acutatum: causal agent of blueberry anthracnose in British Columbia. Plant Pathol. 55, 442–450 (2006).

    Google Scholar 

  • 26.

    Verma, N., MacDonald, L. & Punja, Z. K. Environmental and host requirements for field infection of blueberry fruits by Colletotrichum acutatum in British Columbia. Plant Pathol. 56, 107–113 (2007).

    Google Scholar 

  • 27.

    Miles, T. D. & Schilder, A. C. Host defenses associated with fruit infection by Colletotrichum species with an emphasis on anthracnose of blueberries. Plant Health Prog. 14, 30 (2013).

    Google Scholar 

  • 28.

    Miles, T. D., Hancock, J. F., Callow, P. & Schilder, A. M. C. Evaluation of screening methods and fruit composition in relation to anthracnose fruit rot resistance in blueberries. Plant Pathol. 61, 555–566 (2012).

    Google Scholar 

  • 29.

    Janzen, D. H. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 111, 691–713 (1977).

    CAS  Google Scholar 

  • 30.

    Cipollini, M. L. & Stiles, E. W. Fruit rot, antifungal defense, and palatability of fleshy fruits for frugivorous birds. Ecology 74, 751–762 (1993).

    Google Scholar 

  • 31.

    Peris, J. E., Rodríguez, A., Penã, L. & Fedriani, J. M. Fungal infestation boosts fruit aroma and fruit removal by mammals and birds. Sci. Rep. 7, 1–9 (2017).

    CAS  Google Scholar 

  • 32.

    Lee, J. C. et al. Characterization and manipulation of fruit susceptibility to Drosophila suzukii. J. Pest. Sci. 89, 771–780 (2016).

    Google Scholar 

  • 33.

    Choi, M. Y. et al. Effect of non-nutritive sugars to decrease the survivorship of spotted wing drosophila Drosophila suzukii. J Insect Physiol 99, 86–94 (2017).

    CAS  PubMed  Google Scholar 

  • 34.

    Tochen, S., Walton, V. M. & Lee, J. C. Impact of floral feeding on adult Drosophila suzukii survival and nutrient status. J. Pest Sci. 89, 793–802 (2016).

    Google Scholar 

  • 35.

    Young, Y., Buckiewicz, N. & Long, T. A. F. Nutritional geometry and fitness consequences in Drosophila suzukii, the spotted-wing drosophila. Ecol. Evol. 8, 2842–2851 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Graziosi, I. & Rieske, L. K. A plant pathogen causes extensive mortality in an invasive insect herbivore. Agric. For. Entomol. 17, 366–374 (2015).

    Google Scholar 

  • 37.

    Wallingford, A. K., Hesler, S. P., Cha, D. H. & Loeb, G. M. Behavioral response of spotted-wing drosophila, Drosophila suzukii Matsumura, to aversive odors and a potential oviposition deterrent in the field. Pest Manag. Sci. 72, 701–706 (2016).

    CAS  PubMed  Google Scholar 

  • 38.

    Wallingford, A. K., Cha, D. H., Linn, C. E., Wolfin, M. S. & Loeb, G. M. Robust manipulations of pest insect behavior using repellents and practical application for integrated pest management. Environ. Entomol. 46, 1041–1050 (2017).

    CAS  PubMed  Google Scholar 

  • 39.

    Göhre, V. & Robatzek, S. Breaking the barriers: microbial effector molecules subvert plant immunity. Annu. Rev. Phytopathol. 46, 189–215 (2008).

    PubMed  Google Scholar 

  • 40.

    Csorba, T., Kontra, L. & Burgyán, J. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479–480, 85–103 (2015).

    PubMed  Google Scholar 

  • 41.

    Stringlis, I. A., Zhang, H., Pieterse, C. M. J., Bolton, M. D. & De Jonge, R. Microbial small molecules-weapons of plant subversion. Nat. Prod. Rep. 35, 410–433 (2018).

    CAS  PubMed  Google Scholar 

  • 42.

    McLeod, G. et al. The pathogen causing Dutch elm disease makes host trees attract insect vectors. Proc. Biol. Sci. 272, 2499–2503 (2005).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Raguso, R. A. & Roy, B. A. ‘Floral’ scent production by Puccinia rust fungi that mimic flowers. Mol. Ecol. 7, 1127–1136 (1998).

    CAS  PubMed  Google Scholar 

  • 44.

    Bruce, T. J. A. & Pickett, J. A. Perception of plant volatile blends by herbivorous insects—finding the right mix. Phytochemistry 72, 1605–1611 (2011).

    CAS  PubMed  Google Scholar 

  • 45.

    Revadi, S. et al. Sexual behavior of Drosophila suzukii. Insects 6, 183–196 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 46.

    Polashock, J. J., Ehlenfeldt, M. K., Stretch, A. W. & Kramer, M. Anthracnose fruit rot resistance in blueberry cultivars. Plant Dis. 89, 33–38 (2005).

    PubMed  Google Scholar 

  • 47.

    Hartung, J. S., Burton, C. & Ramsdell, D. C. Epidemiological studies of blueberry anthracnose disease caused by Colletotrichum gloeosporioides. Phytopathology 71, 449 (1981).

    Google Scholar 

  • 48.

    Cai, P. et al. Potential host fruits for Drosophila suzukii: olfactory and oviposition preferences and suitability for development. Entomol. Exp. Appl. 167, 880–890 (2019).

    Google Scholar 

  • 49.

    Rodriguez-Saona, C. et al. Differential susceptibility of wild and cultivated blueberries to an invasive frugivorous pest. J. Chem. Ecol. 45, 286–297 (2018).

    PubMed  Google Scholar 

  • 50.

    Hodge, S. The effect of pH and water content of natural resources on the development of Drosophila melanogaster larvae. Dros. Inf. Serv. 84, 38–43 (2001).

    Google Scholar 

  • 51.

    Schilder, A. M. C., Gillett, J. M. & Woodworth, J. A. The kaleidoscopic nature of blueberry fruit roots. Acta Hortic. 574, 81–83 (2002).

    Google Scholar 

  • 52.

    Jaramillo, S. L., Mehlferber, E. & Moore, P. J. Life-history trade-offs under different larval diets in Drosophila suzukii (Diptera: Drosophilidae). Physiol. Entomol. 40, 2–9 (2015).

    Google Scholar 

  • 53.

    Dalton, D. T. et al. Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Manag. Sci. 67, 1368–1374 (2011).

    CAS  PubMed  Google Scholar 

  • 54.

    Miller, P. M. V-8 juice agar as a general purpose medium for fungi and bacteria. Phytopathology 45, 461–462 (1955).

    Google Scholar 

  • 55.

    Feng, Y., Bruton, R., Park, A. & Zhang, A. Identification of attractive blend for spotted wing drosophila, Drosophila suzukii, from apple juice. J. Pest Sci. 91, 1251–1267 (2018).

    Google Scholar 

  • 56.

    Tochen, S. et al. Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ. Entomol. 43, 501–510 (2014).

    PubMed  Google Scholar 


  • Source: Ecology - nature.com

    American mastodon mitochondrial genomes suggest multiple dispersal events in response to Pleistocene climate oscillations

    Lessons from the Clean Air Car Race 50 years later