in

Responses of global waterbird populations to climate change vary with latitude

  • 1.

    Chen, I. C. et al. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  Google Scholar 

  • 2.

    Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).

    CAS  Google Scholar 

  • 3.

    Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).

    CAS  Google Scholar 

  • 4.

    Pearce-Higgins, J. W. et al. Geographical variation in species’ population responses to changes in temperature and precipitation. Proc. R. Soc. Lond. B 282, 20151561 (2015).

    Google Scholar 

  • 5.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Google Scholar 

  • 6.

    Perez, T. M., Stroud, J. T. & Feeley, K. J. Thermal trouble in the tropics. Science 351, 1392–1393 (2016).

    CAS  Google Scholar 

  • 7.

    Feeley, K. J., Stroud, J. T., Perez, T. M. & Kühn, I. Most ‘global’ reviews of species’ responses to climate change are not truly global. Divers. Distrib. 23, 231–234 (2017).

    Google Scholar 

  • 8.

    Stroud, J. T. & Thompson, M. E. Looking to the past to understand the future of tropical conservation: the importance of collecting basic data. Biotropica 51, 293–299 (2019).

    Google Scholar 

  • 9.

    Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018).

    Google Scholar 

  • 10.

    IUCN Red List Categories and Criteria: Version 3.1 (IUCN, 2001).

  • 11.

    Winfree, R. et al. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

    Google Scholar 

  • 12.

    Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 0067 (2017).

    Google Scholar 

  • 13.

    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887 (2015).

    Google Scholar 

  • 14.

    Lowe, J. R. et al. Responses of coral reef wrasse assemblages to disturbance and marine reserve protection on the Great Barrier Reef. Mar. Biol. 166, 119 (2019).

    Google Scholar 

  • 15.

    Martay, B. et al. Impacts of climate change on national biodiversity population trends. Ecography 40, 1139–1151 (2017).

    Google Scholar 

  • 16.

    Khaliq, I. et al. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. Lond. B 281, 20141097 (2014).

    Google Scholar 

  • 17.

    Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2018).

    CAS  Google Scholar 

  • 18.

    Ramsar Convention on Wetlands Global Wetland Outlook: State of the World’s Wetlands and Their Services to People (Ramsar Convention Secretariat, 2018).

  • 19.

    Mac Nally, R. Hierarchical partitioning as an interpretative tool in multivariate inference. Aust. J. Ecol. 21, 224–228 (1996).

    Google Scholar 

  • 20.

    Cadena, C. D. et al. Latitude, elevational climatic zonation and speciation in New World vertebrates. Proc. R. Soc. Lond. B 279, 194–201 (2012).

    Google Scholar 

  • 21.

    Jezkova, T. & Wiens, J. J. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proc. R. Soc. Lond. B 283, 20162104 (2016).

    Google Scholar 

  • 22.

    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).

    Google Scholar 

  • 23.

    Maclean, I. M. D., Rehfisch, M. M., Delany, S. & Robinson, R. A. The Effects of Climate Change on Migratory Waterbirds within the African-Eurasian Flyway (AEWA, 2007).

  • 24.

    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).

    Google Scholar 

  • 25.

    Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. Lond. B 280, 20121890 (2013).

    Google Scholar 

  • 26.

    Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).

    Google Scholar 

  • 27.

    Gómez, C., Tenorio, E. A., Montoya, P. & Cadena, C. D. Niche-tracking migrants and niche-switching residents: evolution of climatic niches in New World warblers (Parulidae). Proc. R. Soc. Lond. B 283, 20152458 (2016).

    Google Scholar 

  • 28.

    Betts, M. G. et al. Synergistic effects of climate and land-cover change on long-term bird population trends of the western USA: a test of modeled predictions. Front. Ecol. Evol. 7, 186 (2019).

    Google Scholar 

  • 29.

    Kingsford, R. T., Bino, G. & Porter, J. L. Continental impacts of water development on waterbirds, contrasting two Australian river basins: global implications for sustainable water use. Glob. Change Biol. 23, 4958–4969 (2017).

    Google Scholar 

  • 30.

    Canepuccia, A. D. et al. Waterbird response to changes in habitat area and diversity generated by rainfall in a SW Atlantic coastal lagoon. Waterbirds 30, 541–553 (2007).

    Google Scholar 

  • 31.

    Delany, S. Guidance on Waterbird Monitoring Methodology: Field Protocol for Waterbird Counting (Wetlands International, 2010).

  • 32.

    van Roomen, M., van Winden, E. & van Turnhout, C. Analyzing Population Trends at the Flyway Level for Bird Populations Covered by the African Eurasian Waterbird Agreement: Details of a Methodology (SOVON Dutch Centre for Field Ornithology, 2011).

  • 33.

    LeBaron, G. S. The 115th Christmas Bird Count (National Audubon Society, 2015).

  • 34.

    Gill, F. & Donsker, D. (eds) IOC World Bird List Version 5.1 (IOC, 2015).

  • 35.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Google Scholar 

  • 36.

    R Core Team R: A language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  • 37.

    Zeileis, A. & Grothendieck, G. zoo: S3 infrastructure for regular and irregular time series. J. Stat. Softw. 14, 6 (2005).

    Google Scholar 

  • 38.

    Walsh, C. & Nally, R. M. hier.part: Hierarchical Partitioning: R package v.1.0-4 (R Foundation for Statistical Computing, 2013).

  • 39.

    Link, W. A. & Sauer, J. R. Seasonal components of avian population change: joint analysis of two large-scale monitoring programs. Ecology 88, 49–55 (2007).

    Google Scholar 

  • 40.

    Stroud, J. T. & Feeley, K. J. Neglect of the tropics is widespread in ecology and evolution: a comment on Clarke et al. Trends Ecol. Evol. 32, 626–628 (2017).

    Google Scholar 

  • 41.

    Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. R. Soc. Lond. B 280, 20122649 (2013).

    Google Scholar 

  • 42.

    Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).

    Google Scholar 

  • 43.

    van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).

    Google Scholar 

  • 44.

    de Villemereuil, P., Wells, J., Edwards, R. & Blomberg, S. Bayesian models for comparative analysis integrating phylogenetic uncertainty. BMC Evol. Biol. 12, 102 (2012).

    Google Scholar 

  • 45.

    Abadi, F. et al. Importance of accounting for phylogenetic dependence in multi-species mark-recapture studies. Ecol. Modell. 273, 236–241 (2014).

    Google Scholar 

  • 46.

    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    CAS  Google Scholar 

  • 47.

    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).

    CAS  Google Scholar 

  • 48.

    Donoghue, M. J. & Ackerly, D. D. Phylogenetic uncertainties and sensitivity analyses in comparative biology. Phil. Trans. R. Soc. Lond. B 351, 1241–1249 (1996).

    Google Scholar 

  • 49.

    Jetz, W. et al. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS  Google Scholar 

  • 50.

    Spiegelhalter, D., Thomas, A., Best, N. & Lunn, D. OpenBUGS User Manual Version 3.2.3 (2014).

  • 51.

    Sturtz, S., Ligges, U. & Gelman, A. R2WinBUGS: a package for running WinBUGS from R. J. Stat. Softw. 12, 3 (2005).

    Google Scholar 

  • 52.

    The BirdLife Checklist of the Birds of the World Version 7 (BirdLife International, 2014); http://www.birdlife.org/datazone/userfiles/file/Species/Taxonomy/BirdLife_Checklist_Version_70.zip

  • 53.

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS  Google Scholar 

  • 54.

    Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’: R package v.1.10.4-3 (R Foundation for Statistical Computing, 2017).

  • 55.

    Wickham, H., Francois, R., Henry, L. & Muller, K. dplyr: A Grammar of Data Manipulation: R package v.0.7.4 (R Foundation for Statistical Computing, 2017).

  • 56.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  • 57.

    Auguie, B. gridExtra: Miscellaneous Functions for “grid” Graphics: R package v.2.3 (R Foundation for Statistical Computing, 2017).

  • 58.

    Brownrigg, R. mapdata: Extra Map Databases: R package v.2.3.0 (R Foundation for Statistical Computing, 2018).

  • 59.

    Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1 (2011).

    Google Scholar 

  • 60.

    Urbanek, S. png: Read and Write PNG Images: R package v.0.1-7 (R Foundation for Statistical Computing, 2013).

  • 61.

    Neuwirth, E. RColorBrewer: ColorBrewer Palettes: R package v.1.1-2 (R Foundation for Statistical Computing, 2014).

  • 62.

    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the Geospatial Data Abstraction Library: R package v.1.2-8 (R Foundation for Statistical Computing, 2017).

  • 63.

    Hijmans, R. J. raster: Geographic Data Analysis and Modeling: R package v.2.6-7 (R Foundation for Statistical Computing, 2017).

  • 64.

    Garnier, S. viridis: Default Color Maps from ‘matplotlib’: R package v.0.5.1 (R Foundation for Statistical Computing, 2018).

  • 65.

    Nadeau, C. P., Urban, M. C. & Bridle, J. R. Climates past, present, and yet-to-come shape climate change vulnerabilities. Trends Ecol. Evol. 32, 786–800 (2017).

    Google Scholar 

  • 66.

    Breed, G. A., Stichter, S. & Crone, E. E. Climate-driven changes in northeastern US butterfly communities. Nat. Clim. Change 3, 142–145 (2012).

    Google Scholar 

  • 67.

    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).

    Google Scholar 

  • 68.

    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).

    Google Scholar 

  • 69.

    Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).

    Google Scholar 

  • 70.

    Mills, S. C. et al. European butterfly populations vary in sensitivity to weather across their geographical ranges. Glob. Ecol. Biogeogr. 26, 1374–1385 (2017).

    Google Scholar 

  • 71.

    Johnston, A. et al. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Change 3, 1055–1061 (2013).

    Google Scholar 

  • 72.

    Faragó, S. & Hangya, K. Effects of water level on waterbird abundance and diversity along the middle section of the Danube River. Hydrobiologia 697, 15–21 (2012).

    Google Scholar 

  • 73.

    Kleijn, D. et al. Waterbirds increase more rapidly in Ramsar-designated wetlands than in unprotected wetlands. J. Appl. Ecol. 51, 289–298 (2014).

    Google Scholar 

  • 74.

    Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).

    Google Scholar 

  • 75.

    Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 31, 190–203 (2016).

    Google Scholar 

  • 76.

    Dhanjal-Adams, K. L. et al. Distinguishing local and global correlates of population change in migratory species. Divers. Distrib. 25, 797–808 (2019).

    Google Scholar 

  • 77.

    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT News – Food | Water

    Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes