in

Revealing soil legacy phosphorus to promote sustainable agriculture in Brazil

  • 1.

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818. https://doi.org/10.1126/science.1185383 (2010).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 2.

    OECD/FAO. Agricultural Outlook 2018–2027, OECD Publishing, Paris/Food and Agriculture Organization of the United Nations, Rome. https://doi.org/10.1787/agr_outlook-2018-en (2018).

  • 3.

    FAO. The future of food and agriculture – Trends and challenges. Rome. (2017).

  • 4.

    Strassburg, B. B. N. et al. When enough should be enough: improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob. Environ. Chang. 28, 84–97 (2014).

    Article  Google Scholar 

  • 5.

    Bowman, M. S. et al. Persistence of cattle ranching in the Brazilian Amazon: a spatial analysis of the rationale for beef production. Land Use Policy 29, 558–568 (2012).

    Article  Google Scholar 

  • 6.

    Bustamante, M. M. C. et al. Estimating greenhouse gas emissions from cattle raising in Brazil. Clim. Chang. 115, 559–577 (2012).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Oliveira, D. M. S. et al. Is the expansion of sugarcane over pasturelands a sustainable strategy for Brazil’s bioenergy industry?. Renew. Sust. Energy Rev. 102, 346–355 (2019).

    Article  Google Scholar 

  • 8.

    Roy, E. D. et al. Soil phosphorus sorption capacity after three decades of intensive fertilization in Mato Grosso, Brazil. Agric. Ecos. Environ. 249, 206–214 (2017).

    CAS  Article  Google Scholar 

  • 9.

    Jarvie, H. P. et al. The pivotal role of phosphorus in a resilient water–energy–food security nexus. J. Environ. Qual. 44, 1049–1062 (2015).

    CAS  Article  Google Scholar 

  • 10.

    ANDA – Associação Nacional para Difusão de Adubos. Indicadores – Fertilizantes entregues ao mercado. https://anda.org.br/index.php?mpg=03.00.00 (2017).

  • 11.

    U.S. Geological Survey. Mineral commodity summaries 2016. https://doi.org/10.3133/70140094 (2016).

  • 12.

    MacDonald, G. K., Bennett, E. M., Potter, P. A. & Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Nat. Acad. Sci. 108(7), 3086–3091. https://doi.org/10.1073/pnas.1010808108 (2011).

    ADS  Article  PubMed  Google Scholar 

  • 13.

    Lun, F. et al. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth Syst. Sci. Data 10, 1–18. https://doi.org/10.5194/essd-10-1-2018 (2018).

    ADS  Article  Google Scholar 

  • 14.

    Rodrigues, M., Pavinato, P. S., Withers, P. J. A., Teles, A. P. B. & Herrera, W. F. B. Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna. Sci. Total Environ. 542, 1050–1061 (2016).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Sattari, S. Z., Bouwman, A. F., Giller, K. E. & van Ittersum, M. K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc. Nat. Acad. Sci. 109, 6348–6353 (2012).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Rowe, H. et al. Integrating legacy soil phosphorus into sustainable nutrient management practices on farms. Nutr. Cycl. Agroec. 104, 393–412 (2016).

    CAS  Article  Google Scholar 

  • 17.

    Shen, J. et al. Phosphorus dynamics: from soil to plant. Plant Phys. 156, 997–1005 (2011).

    CAS  Article  Google Scholar 

  • 18.

    IBGE – Instituto Brasileiro de Geografia e Estatística. Sistema IBGE de Recuperação Automática – SIDRA. Brasil. https://sidra.ibge.gov.br (2018).

  • 19.

    Projeto MapBiomas. Coleção 4.0 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. https://mapbiomas.org (2019).

  • 20.

    Dias, L. C. P., Pimenta, F. M., Santos, A. B., Costa, M. H. & Ladle, R. J. Patterns of land use, extensification, and intensification of Brazilian agriculture. Glob. Chang. Biol. 22, 2887–2903 (2016).

    ADS  Article  Google Scholar 

  • 21.

    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226. https://doi.org/10.1038/s41561-019-0530-4 (2020).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Withers, P. J. A. et al. Transitions to sustainable management of phosphorus in Brazilian agriculture. Sci. Rep. 8, 2537. https://doi.org/10.1038/s41598-018-20887-z (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    FAO. World fertiliser trends and outlook to 2018. Rome. 53p. (2015).

  • 24.

    Kassam, A., Friedrich, T. & Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Studies. 76, 29–51. https://doi.org/10.1080/00207233.2018.1494927 (2018).

    CAS  Article  Google Scholar 

  • 25.

    Franchini, J. C. et al. Evolution of crop yields in different tillage and cropping systems over two decades in southern Brazil. Field Crops Res. 137, 178–185 (2012).

    Article  Google Scholar 

  • 26.

    Roy, E. D. et al. The phosphorus cost of agricultural intensification in the tropics. Nat. Plants 2, 16043. https://doi.org/10.1038/nplants.2016.43 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 27.

    Schoumans, O. F., Bouraoui, F., Kabbe, C., Oenema, O. & van Dijk, K. C. Phosphorus management in Europe in a changing world. Ambio 44(Suppl. 2), S180–S192. https://doi.org/10.1007/s13280-014-0613-9 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 28.

    Antoniadis, V., Hatzis, F., Bachtsevanidis, D. & Koutroubas, S. D. Phosphorus availability in low-P and acidic soils as affected by liming and P addition. Commun. Soil Sci. Plant Anal. 46, 1288–1298. https://doi.org/10.1080/00103624.2015.1033539 (2015).

    CAS  Article  Google Scholar 

  • 29.

    Bouwman, A. F., Beusen, A. H. W. & Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050, Global Biogeoc. Cyc. 23, GB0A04. https://doi.org/10.1029/2009GB003576 (2009).

  • 30.

    Withers, P. J. A. et al. Stewardship to tackle global phosphorus inefficiency: the case of Europe. Ambio 44(2), 193–206 (2015).

    CAS  Article  Google Scholar 

  • 31.

    Soltangheisi, A. et al. Improving phosphorus sustainability of sugarcane production in Brazil. GCB Bioenergy 11, 1444–1455. https://doi.org/10.1111/gcbb.12650 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 32.

    MacDonald, G. K. et al. Guiding phosphorus stewardship for multiple ecosystem services. Ecos. Health Sust. 2(12), e01251. https://doi.org/10.1002/ehs2.1251 (2016).

    Article  Google Scholar 

  • 33.

    Schipanski, M. E. et al. Realizing resilient food systems. Bioscience 66(7), 600–610. https://doi.org/10.1093/biosci/biw052 (2016).

    Article  Google Scholar 

  • 34.

    MAPA – Ministério da Agricultura, Pecuária e Abastecimento. Projeções do Agronegócio. Brasil 2015/16 a 2025/26. Projeções de Longo Prazo. 138p. (2016).

  • 35.

    Forest Act. Federal Law # 12,651. https://www.planalto.gov.br/ccivil_03/Ato2011-2014/2012/Lei/L12651compilado.htm (2012).

  • 36.

    Dias-Filho, M. B. Diagnóstico das Pastagens no Brasil. Embrapa Amazônia Oriental. Série Documentos 402. Belém-PA, 36p. (2014).

  • 37.

    Bouwman, A. F. et al. Lessons from temporal and spatial patterns in global use of N and P fertiliser on cropland. Sci. Rep. 7, 40366. https://doi.org/10.1038/srep40366 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    MacDonald, G. K., Bennett, E. M. & Carpenter, S. R. Embodied phosphorus and the global connections of United States agriculture. Environ. Res. Letters 7, 044024. https://doi.org/10.1088/1748-9326/7/4/044024 (2012).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Novais, R.F., Smyth, T.J. & Nunes, F.N. Fósforo. In: Novais, R.F. et al. Fertilidade do solo. Viçosa, MG, Sociedade Brasileira de Ciência do Solo, p. 471–537 (2007).

  • 40.

    Negassa, W. & Leinweber, P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. J. Plant Nutr. Soil Sci. 172, 305–325 (2009).

    CAS  Article  Google Scholar 

  • 41.

    CONAB – Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de grãos. Brasília. https://www.conab.gov.br/info-agro/safras/graos (2018).

  • 42.

    Dong, W. Y. et al. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China. Biogeosci. 12, 5537–5546. https://doi.org/10.5194/bg-12-5537-2015 (2015).

    ADS  Article  Google Scholar 

  • 43.

    Cherubin, M. R. et al. Sugarcane straw removal: Implications to soil fertility and fertiliser demand in Brazil. Bioeng. Res. 12, 888–900. https://doi.org/10.1007/s12155-019-10021-w (2019).

    CAS  Article  Google Scholar 

  • 44.

    Balemi, T. & Negisho, K. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. J. Soil Sci. Plant Nutr. 12(3), 547–562. https://doi.org/10.4067/S0718-95162012005000015 (2012).

    Article  Google Scholar 

  • 45.

    Khan, M. S., Zaidi, A. & Wani, P. A. Role of phosphate-solubilizing microorganisms in sustainable agriculture – a review. Agron. Sust. Develop. 27, 29–43. https://doi.org/10.1051/agro:2006011 (2007).

    Article  Google Scholar 

  • 46.

    Kalayu, G. Phosphate solubilizing microorganisms: promising approach as biofertilisers. Int. J. Agron. 2019, 4917256. https://doi.org/10.1155/2019/4917256 (2019).

    CAS  Article  Google Scholar 

  • 47.

    Simpson, R. J. et al. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 349, 89–120. https://doi.org/10.1007/s11104-011-0880-1 (2011).

    CAS  Article  Google Scholar 

  • 48.

    Almeida, D. S., Penn, C. J. & Rosolem, C. A. Assessment of phosphorus availability in soil cultivated with ruzigrass. Geoderma 312, 64–73 (2018).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Bindraban, P. S., Dimkpa, C., Nagarajan, L., Roy, A. & Rabbinge, R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol. Fert. Soils 51, 897–911. https://doi.org/10.1007/s00374-015-1039-7 (2015).

    CAS  Article  Google Scholar 

  • 50.

    Johnston, A. M. & Bruulsema, T. W. 4R nutrient stewardship for improved nutrient use efficiency. Procedia Eng. 83, 365–370. https://doi.org/10.1016/j.proeng.2014.09.029 (2014).

    Article  Google Scholar 

  • 51.

    Shigaki, F., Sharpley, A. & Prochnow, L. I. Animal-based agriculture, phosphorus management and water quality in Brazil: options for the future. Sci. Agric. 63(2), 194–209. https://doi.org/10.1590/S0103-90162006000200013 (2006).

    CAS  Article  Google Scholar 

  • 52.

    Almagro, A., Oliveira, P. T. S., Nearing, M. A. & Hagemann, S. Projected climate change impacts in rainfall erosivity over Brazil. Sci. Rep. 7, 8130. https://doi.org/10.1038/s41598-017-08298-y (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 53.

    FAO – Food and agriculture organization. The world agricultural production. https://faostat.fao.org/site/339/default.aspx (2006).

  • 54.

    Nunes, S. P. O campo político da agricultura familiar e a idéia de “Projeto alternativo de desenvolvimento”. Master dissertation. Federal University of Paraná – UFPR. Curitiba. 152p. (2007).

  • 55.

    Alves, E., Teixeira Filho, A. & Tolloni, H. Demographic aspects of agricultural development: Brazil, 1950–74. In: Yeganiantz, L. (Ed.). Brazilian agriculture and agricultural research. Brasília: Embrapa, p. 9–60 (1984).

  • 56.

    IFA – International Fertiliser Association. Ifadata. https://ifadata.fertiliser.org/ucResult.aspx?temp=20160502093015 (2016).

  • 57.

    Marin, F. R., Pilau, F. G., Spolador, H. F. S., Otto, O. & Pedreira, C. G. S. Intensificação sustentável da agricultura brasileira, cenários para 2050. Rev. Pol. Agríc. XXV(3), 108–124 (2016).

    Google Scholar 

  • 58.

    Nicolella, A. C., Dragone, D. S. & Bacha, C. J. C. Determinantes da demanda de fertilizantes no Brasil no período de 1970 a 2002. Rev. Econ. Sociol. Rural 43(1), 81–100. https://doi.org/10.1590/S0103-20032005000100005 (2005).

    Article  Google Scholar 

  • 59.

    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://qgis.osgeo.org (2018).

  • 60.

    CNA Brasil – Confederação Nacional da Agricultura. https://www.cnabrasil.org.br/noticias/assocon-divulga-crescimento-de-5-no-numero-de-bovinos-confinados-em-2017 (2017).

  • 61.

    Costa-Junior, C., Cerri, C. E., Pires, A. V. & Cerri, C. C. Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil. Sci. Total Environ. 505, 1018–1025 (2015).

    ADS  CAS  Article  Google Scholar 

  • 62.

    Prado, R. M., Caione, G. & Campos, C. N. S. Filter Cake and Vinasse as fertilisers contributing to conservation agriculture. Appl. Environ. Soil Sci. https://doi.org/10.1155/2013/581984 (2013).

    Article  Google Scholar 

  • 63.

    Francisco, E. A. B., Câmara, G. M. S. & Segatelli, C. R. Estado nutricional e produção do capim-pé-de-galinha e da soja cultivada em sucessão em sistema antecipado de adubação. Bragantia 66(2), 259–266 (2007).

    Article  Google Scholar 

  • 64.

    Pauletti, V. Nutrientes: teor e interpretação. Campinas: Fundação ABC/Fundação Cargill, 59p. (1998).

  • 65.

    Broch, D. L. & Ranno, S. K. Fertilidade do solo, Adubação e Nutrição da Cultura da Soja. In: Fundação MS, Tecnologia de Produção: Soja e Milho 2012/2013. Maracaju: Fundação MS, p. 2–38 (2012).

  • 66.

    Corrêa, J. C., Nicoloso, R. S., Menezes, J. F. S. & Benites, V. M. Critérios Técnicos para Recomendação de Biofertilizante de Origem Animal em Sistemas de Produção Agrícolas e Florestais. https://pt.engormix.com/suinocultura/artigos/biofertilizante-producao-agricolas-florestais-t37769.htm (2012).

  • 67.

    Rosseto, R., Dias, F. L. F., Vitti, A. C., Cantarella, H. & Landell, M. G. A. Manejo conservacionista e reciclagem de nutrientes em cana-de-açúcar tendo em vista a colheita mecânica. Inf. Agron. 124, 8–13 (2008).

    Google Scholar 

  • 68.

    Malavolta, E. Manual de Nutrição Mineral de Plantas (Agronômica Ceres, São Paulo, 2006).

    Google Scholar 


  • Source: Ecology - nature.com

    Genetic structure in Orkney island mice: isolation promotes morphological diversification

    Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize in Zimbabwe