Liu, Z. et al. Effect of simulated acid rain on soil CO2, CH4 and N2O emissions and microbial communities in an agricultural soil. Geoderma 366, 114222 (2020).
Li, M. et al. Biochemical response, histopathological change and DNA damage in earthworm (Eisenia fetida) exposed to sulfentrazone herbicide. Ecol. Indic. 115, 106465 (2020).
Zhang, Q., Saleem, M. & Wang, C. Effects of biochar on the earthworm (Eisenia foetida) in soil contaminated with and/or without pesticide mesotrione. Sci. Total Environ. 671, 52–58 (2019).
Wu, Y. et al. Ecological clusters based on responses of soil microbial phylotypes to precipitation explain ecosystem functions. Soil Biol. Biochem. 142, 107717 (2020).
Saleem, M., Hu, J. & Jousset, A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol. Evol. Syst. 50, 6.1-6.24 (2019).
Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579 (2017).
Saleem, M. Ecoevolutionary processes regulating microbiome community assembly in a changing global ecosystem. In Microbiome Community Ecology: Fundamentals and Applications (ed. Saleem, M.) 55–87 (Springer, Berlin, 2015). https://doi.org/10.1007/978-3-319-11665-5_3.
Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).
Prosser, J. I. et al. The role of ecological theory in microbial ecology. Nat. Rev. Micro. 5, 384–392 (2007).
Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).
Bashan, Y., Bashan, L. E., Prabhu, S. R. & Hernandez, J.-P. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378, 1–33 (2013).
Sun, T., Li, M., Saleem, M., Zhang, X. & Zhang, Q. The fungicide “fluopyram” promotes pepper growth by increasing the abundance of P-solubilizing and N-fixing bacteria. Ecotoxicol. Environ. Saf. 188, 109947 (2020).
Dimkpa, C., Weinand, T. & Asch, F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32, 1682–1694 (2009).
Sun, T. et al. Bacterial compatibility and immobilization with biochar improved tebuconazole degradation, soil microbiome composition and functioning. J. Hazard. Mater. 398, 122941 (2020).
van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. 109, 1159–1164 (2012).
Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).
Hu, J. et al. Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning. Soil Biol. Biochem. 113, 122–129 (2017).
Woo, S. L. & Pepe, O. Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front. Plant Sci. 9, 1801 (2018).
Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551–556 (2009).
USDA. Sorghum Production by Country | World Agricultural Production 2019/2020. https://www.worldagriculturalproduction.com/crops/sorghum.aspxhttps://www.worldagriculturalproduction.com/crops/sorghum.aspx (2019).
Zhao, Z.-Y., Che, P., Glassman, K. & Albertsen, M. Nutritionally enhanced sorghum for the arid and semiarid tropical areas of Africa. In Sorghum: Methods and Protocols (eds Zhao, Z.-Y. & Dahlberg, J.) 197–207 (Springer, Berlin, 2019).
Schlemper, T. R. et al. Rhizobacterial community structure differences among sorghum cultivars in different growth stages and soils. FEMS Microbiol. Ecol https://doi.org/10.1093/femsec/fix096/4002672 (2017).
Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl. Acad. Sci. 115, E4284–E4293 (2018).
Hara, S. et al. Identification of nitrogen-fixing bradyrhizobium associated with roots of field-grown sorghum by metagenome and proteome analyses. Front. Microbiol. 10, 407 (2019).
Idris, H. A., Labuschagne, N. & Korsten, L. Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol. Control 40, 97–106 (2007).
Idris, A., Labuschagne, N. & Korsten, L. Efficacy of rhizobacteria for growth promotion in sorghum under greenhouse conditions and selected modes of action studies. J. Agric. Sci. 147, 17–30 (2009).
Kort, J., Collins, M. & Ditsch, D. A review of soil erosion potential associated with biomass crops. Biomass Bioenergy 14, 351–359 (1998).
Truong, S. K., McCormick, R. F. & Mullet, J. E. Bioenergy sorghum crop model predicts VPD-limited transpiration traits enhance biomass yield in water-limited environments. Front. Plant Sci. 8, 335 (2017).
Li, C. et al. Soil carbon sequestration potential in semi-arid grasslands in the Conservation Reserve Program. Geoderma 294, 80–90 (2017).
Saleem, M., Ji, H., Amirullah, A. & Brian Traw, M. Pseudomonas syringae pv tomato DC3000 growth in multiple gene knockouts predicts interactions among hormonal, biotic and abiotic stress responses. Eur. J. Plant Pathol. 149, 779–786 (2017).
Zhang, Q., Saleem, M. & Wang, C. Probiotic strain Stenotrophomonas acidaminiphila BJ1 degrades and reduces chlorothalonil toxicity to soil enzymes, microbial communities and plant roots. AMB Express 7, 227 (2017).
Mahmood, A., Turgay, O. C., Farooq, M. & Hayat, R. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw112 (2016).
Mortlock, M. Y. & Vanderlip, R. L. Germination and establishment of pearl millet and sorghum of different seed qualities under controlled high-temperature environments. Field Crops Res. 22, 195–209 (1989).
Bond, J. J., Army, T. J. & Lehman, O. R. Row spacing, plant populations and moisture supply as factors in dryland grain sorghum production 1. Agron. J. 56, 3–6 (1964).
Jones, O. R. & Johnson, G. L. Row width and plant density effects on texas high plains sorghum. J. Prod. Agric. 4, 613–621 (1991).
Faisal, M., Barani, A. R. S., Malik, A., Hussain, M. & Awan, S. I. Yield response of fodder sorghum (Sorghum bicolor) to seed rate and row spacing under rain-fed conditions. J. Agric. Soc. Sci. Pak. 3, 95 (2007).
McGuire, S. J. Vulnerability in farmer seed systems: Farmer practices for coping with seed insecurity for sorghum in Eastern Ethiopia. Econ. Bot. 61, 211 (2007).
Snider, J. L., Raper, R. L. & Schwab, E. B. The effect of row spacing and seeding rate on biomass production and plant stand characteristics of non-irrigated photoperiod-sensitive sorghum (Sorghum bicolor (L.) Moench). Ind. Crops Prod. 37, 527–535 (2012).
Place, G. T., Reberg-Horton, S. C., Dunphy, J. E. & Smith, A. N. Seeding rate effects on weed control and yield for organic soybean production. Weed Technol. 23, 497–502 (2009).
Harvey, T. L. & Thompson, C. A. Effects of sorghum density and resistance on infestations of Greenbug, Schizaphis graminum (Homoptera: Aphididae). J. Kans. Entomol. Soc. 61, 68–71 (1988).
Riedell, W. E. Mineral-nutrient synergism and dilution responses to nitrogen fertilizer in field-grown maize. J. Plant Nutr. Soil Sci. 173, 869–874 (2010).
Pii, Y., Cesco, S. & Mimmo, T. Shoot ionome to predict the synergism and antagonism between nutrients as affected by substrate and physiological status. Plant Physiol. Biochem. 94, 48–56 (2015).
Rietra, R. P. J. J., Heinen, M., Dimkpa, C. O. & Bindraban, P. S. Effects of Nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun. Soil Sci. Plant Anal. 48, 1895–1920 (2017).
Santos, E. F., Pongrac, P., Reis, A. R., White, P. J. & Lavres, J. Phosphorus–zinc interactions in cotton: consequences for biomass production and nutrient-use efficiency in photosynthesis. Physiol. Plant. 166, 996–1007 (2018).
Egamberdiyeva, D. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36, 184–189 (2007).
Bindraban, P. S., Dimkpa, C., Nagarajan, L., Roy, A. & Rabbinge, R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol. Fertil. Soils 51, 897–911 (2015).
Yahya, A. Salinity effects on growth and on uptake and distribution of sodium and some essential mineral nutrients in sesame. J. Plant Nutr. 21, 1439–1451 (1998).
Alam, S., Kamei, S. & Kawai, S. Effect of iron deficiency on the chemical composition of the xylem sap of barley. Soil Sci. Plant Nutr. 47, 643–649 (2001).
Wei Yang, T. J., Perry, P. J., Ciani, S., Pandian, S. & Schmidt, W. Manganese deficiency alters the patterning and development of root hairs in Arabidopsis. J. Exp. Bot. 59, 3453–3464 (2008).
Dimkpa, C. O. et al. ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris). Nanotoxicology 9, 271–278 (2015).
Petti, C., Hirano, K., Stork, J. & DeBolt, S. Mapping of a cellulose-deficient mutant named dwarf1-1 in sorghum bicolor to the green revolution gene gibberellin20-oxidase reveals a positive regulatory association between gibberellin and cellulose biosynthesis. Plant Physiol. 169, 705–716 (2015).
Xia, Y., Greissworth, E., Mucci, C., Williams, M. A. & Bolt, S. D. Characterization of culturable bacterial endophytes of switchgrass (Panicum virgatum L.) and their capacity to influence plant growth. GCB Bioenergy 5, 674–682 (2013).
Chaney, A. L. & Marbach, E. P. Modified reagents for determination of urea and ammonia. Clin. Chem. 8, 130–132 (1962).
Fiske, C. H. & Subbarow, Y. The colorimetric determination of phosphorus. J. Biol. Chem. 66, 375–400 (1925).
Miller, G. L. & Dickens, R. Bermudagrass carbohydrate levels as influenced by potassium fertilization and cultivar. Crop Sci. 36(5), 1283–1289 (1996).
Serson, W. et al. Development of whole and ground seed near-infrared spectroscopy calibrations for oil, protein, moisture, and fatty acids in Salvia hispanica. J. Am. Oil Chem. Soc. 97, 3–13 (2020).
Saleem, M., Law, A. D. & Moe, L. A. Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes. Microb. Ecol. 71, 469–472 (2016).
Meng, L. et al. Soil-applied biochar increases microbial diversity and wheat plant performance under herbicide fomesafen stress. Ecotoxicol. Environ. Saf. 171, 75–83 (2019).
Mounde, L. G., Boh, M. Y., Cotter, M. & Rasche, F. Potential of Rhizobacteria for promoting sorghum growth and suppressing Striga hermonthica development. J. Plant Dis. Prot. 122, 100–106 (2015).
Kumar, H., Dubey, R. C. & Maheshwari, D. K. Seed-coating fenugreek with Burkholderia rhizobacteria enhances yield in field trials and can combat Fusarium wilt. Rhizosphere 3, 92–99 (2017).
Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Van, A. L. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).
Singh, M. et al. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth. Sci. Rep. 5, 15500 (2015).
Lei, S. A. Intraspecific competition among blackbrush (Coleogyne ramosissima) seedlings in a controlled environmental glasshouse. J. Ariz.-Nev. Acad. Sci. 37, 100–104 (2004).
XiaoAn, Z. et al. Seasonal changes in the relationship between species richness and community biomass in grassland under grazing and exclosure, Horqin Sandy Land, northern China. Sci. Cold Arid Reg. 5, 177–183 (2013).
de Aguiar, M. I., Fialho, J. S., de Araújo, F. C. S., Campanha, M. M. & de Oliveira, T. S. Does biomass production depend on plant community diversity?. Agrofor. Syst. 87, 699–711 (2013).
Falzari, L. M., Menary, R. C. & Dragar, V. A. Optimum stand density for maximum essential oil yield in commercial fennel crops. HortScience 41, 646–650 (2006).
Ghiasy-Oskoee, M., AghaAlikhani, M., Mokhtassi-Bidgoli, A., Sefidkon, F. & Ayyari, M. Seed and biomass yield responses of blessed thistle to nitrogen and density. Agron. J. 111, 601–611 (2019).
Isaac, M. E., Ulzen-Appiah, F., Timmer, V. R. & Quashie-Sam, S. J. Early growth and nutritional response to resource competition in cocoa-shade intercropped systems. Plant Soil 298, 243–254 (2007).
Blank, R. R. Intraspecific and interspecific pair-wise seedling competition between exotic annual grasses and native perennials: plant–soil relationships. Plant Soil 326, 331–343 (2010).
Dobermann, A. R. et al. Understanding and Managing Corn Yield Potential. Agron. Hortic. — Fac. Publ. (2002).
Sabais, A. C. W. et al. Soil organisms shape the competition between grassland plant species. Oecologia 170, 1021–1032 (2012).
Munoz, A. E. & Weaver, R. W. Competition between Subterranean Clover and Rygrass for uptake of 15N-labeled fertilizer. Plant Soil 211, 173–178 (1999).
Eisenhauer, N. & Scheu, S. Invasibility of experimental grassland communities: the role of earthworms, plant functional group identity and seed size. Oikos 117, 1026–1036 (2008).
Tesfaye, M. et al. Influence of enhanced malate dehydrogenase expression by alfalfa on diversity of rhizobacteria and soil nutrient availability. Soil Biol. Biochem. 35, 1103–1113 (2003).
Fernandez, A. L. et al. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment. Sci. Total Environ. 566–567, 949–959 (2016).
Bashan, Y., Holguin, G. & de-Bashan, L. E. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can. J. Microbiol. 50, 521–577 (2004).
Dinesh, R. et al. Effects of plant growth-promoting rhizobacteria and NPK fertilizers on biochemical and microbial properties of soils under ginger (Zingiber officinale) Cultivation. Agric. Res. 2, 346–353 (2013).
Li, Q. et al. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems. Int. J. Mol. Sci. 19, 622 (2018).
Maron, P.-A. et al. High microbial diversity promotes soil ecosystem functioning. Appl. Environ. Microbiol. 84, e02738-e2817 (2018).
Loreau, M., Naeem, S. & Inchausti, P. Biodiversity and ecosystem functioning: synthesis and perspectives. In Biodiversity and Ecosystem Functioning: Synthesis and Perspectives (eds Loreau, M. et al.) (Oxford University Press, Oxford, 2002).
Patten, C. L. & Glick, B. R. Role of pseudomonas putida Indoleacetic Acid in development of the host plant root system. Appl. Environ. Microbiol. 68, 3795–3801 (2002).
Compant, S., Clément, C. & Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42, 669–678 (2010).
Sahn, D. E. The Fight Against Hunger and Malnutrition: The Role of Food, Agriculture, and Targeted Policies (OUP, Oxford, 2015).
Schmidt, S. B., Jensen, P. E. & Husted, S. Manganese deficiency in plants: the impact on photosystem II. Trends Plant Sci. 21, 622–632 (2016).
Lambers, H., Hayes, P. E., Laliberté, E., Oliveira, R. S. & Turner, B. L. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci. 20, 83–90 (2015).
de Santiago, A., Quintero, J. M., Avilés, M. & Delgado, A. Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 342, 97–104 (2011).
Rajkumar, M., Sandhya, S., Prasad, M. N. V. & Freitas, H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol. Adv. 30, 1562–1574 (2012).
Gyaneshwar, P., Naresh Kumar, G., Parekh, L. J. & Poole, P. S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245, 83–93 (2002).
Kuo, S. & Mikkelsen, D. S. Effect of P and Mn on growth response and uptake of Fe, Mn and P by sorghum. Plant Soil 62, 15–22 (1981).
Shri, P. U. & Pillay, V. Excess of soil zinc interferes with uptake of other micro and macro nutrients in Sorghum bicolor (L.) plants. Indian J. Plant Physiol. 22, 304–308 (2017).
Slaton, N. A., Roberts, T. L., Golden, B. R., Ross, W. J. & Norman, R. J. Soybean response to phosphorus and potassium supplied as inorganic fertilizer or poultry litter. Agron. J. 105, 812–820 (2013).
Griffin, E. A., Wright, S. J., Morin, P. J. & Carson, W. P. Pervasive interactions between foliar microbes and soil nutrients mediate leaf production and herbivore damage in a tropical forest. New Phytol. 216, 99–112 (2017).
Harpole, W. S. et al. Nutrient co-limitation of primary producer communities. Ecol. Lett. 14, 852–862 (2011).
Zuo, Y. & Zhang, F. Soil and crop management strategies to prevent iron deficiency in crops. Plant Soil 339, 83–95 (2011).
Source: Ecology - nature.com