in

Riparian and in-channel habitat properties linked to dragonfly emergence

  • 1.

    Noss, R. F. Indicators for monitoring biodiversity: A hierarchical approach. Conserv. Biol. 4, 355–364 (1990).

    Article  Google Scholar 

  • 2.

    Lambeck, R. J. Focal species: A multi-species umbrella for nature conservation. Conserv. Biol. 11, 849–856 (1997).

    Article  Google Scholar 

  • 3.

    Knight, T. M., McCoy, M. W., Chase, J. M., McCoy, K. A. & Holt, R. D. Trophic cascades across ecosystems. Nature 437, 880–883 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Rudolf, V. H. W. & Rasmussen, N. L. Ontogenetic functional diversity: Size structure of a keystone predator drives functioning of a complex ecosystem. Ecology 94, 1046–1056 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Bulánková, E. Dragonflies (Odonata) as bioindicators. Biologia, Bratislava 52, 177–180 (1997).

    Google Scholar 

  • 6.

    Catling, P. M. A potential for the use of dragonfly (Odonata) diversity as a bioindicator of the efficiency of sewage lagoons. Can. Field Nat. 119, 233 (2005).

    Article  Google Scholar 

  • 7.

    Vorster, C. et al. Development of a new continental-scale index for freshwater assessment based on dragonfly assemblages. Ecol. Indic. 109, 105819 (2020).

    Article  Google Scholar 

  • 8.

    Jeremiason, J. D., Reiser, T. K., Weitz, R. A., Berndt, M. E. & Aiken, G. R. Aeshnid dragonfly larvae as bioindicators of methylmercury contamination in aquatic systems impacted by elevated sulfate loading. Ecotoxicology 25, 456–468 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Chovanec, A. & Raab, R. Dragonflies (Insecta, Odonata) and the ecological status of newly created wetlands—examples for long-term bioindication programmes. Limnologica 27, 381–392 (1997).

    Google Scholar 

  • 10.

    Chovanec, A. & Waringer, J. Ecological integrity of river–floodplain systems—assessment by dragonfly surveys (Insecta: Odonata). Regul. Rivers Res. Manag. 17, 493–507 (2001).

    Article  Google Scholar 

  • 11.

    Rocha-Ortega, M., Rodríguez, P. & Córdoba-Aguilar, A. Can dragonfly and damselfly communities be used as bioindicators of land use intensification?. Ecol. Indic. 107, 105553 (2019).

    Article  Google Scholar 

  • 12.

    Kalkman, V. J. et al. Diversity and conservation of European dragonflies and damselflies (Odonata). Hydrobiologia 811, 269–282 (2018).

    Article  Google Scholar 

  • 13.

    Harvey, J. A. et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 4, 174–176 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Falck, J. & Johansson, F. Patterns in size, sex ratio and time at emergence in a South Swedish population of Sympetrum sanguineum (Odonata). Aquat. Insects 22, 311–317 (2000).

    Article  Google Scholar 

  • 15.

    Farkas, A. et al. Sex ratio in Gomphidae (Odonata) at emergence: Is there a relationship with water temperature?. Int. J. Odonatol. 16, 279–287 (2013).

    Article  Google Scholar 

  • 16.

    Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).

    Article  Google Scholar 

  • 17.

    Daigle, R. J. Sea-level rise estimates for New Brunswick municipalities: Saint John, Sackville, Richibucto, Shippagan, Caraquet, Le Goulet. Report for the Atlantic Climate Adaptation Solutions Association (2011).

  • 18.

    Tockner, K., Pusch, M., Borchardt, D. & Lorang, M. S. Multiple stressors in coupled river–floodplain ecosystems. Freshw. Biol. 55, 135–151 (2010).

    Article  Google Scholar 

  • 19.

    Nakano, S. & Murakami, M. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl. Acad. Sci. 98, 166–170 (2001).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Rantala, M. J., Ilmonen, J., Koskimäki, J., Suhonen, J. & Tynkkynen, K. The macrophyte, Stratiotes aloides, protects larvae of dragonfly Aeshna viridis against fish predation. Aquat. Ecol. 38, 77–82 (2004).

    Google Scholar 

  • 21.

    Suhonen, J., Suutari, E., Kaunisto, K. M. & Krams, I. Patch area of macrophyte Stratioites aloides as a critical resource for declining dragonfly Aeshna viridis. J. Insect Conserv. 17, 393–398 (2013).

    Google Scholar 

  • 22.

    Bell, H. L. Effect of low pH on the survival and emergence of aquatic insects. Water Res. 5, 313–319 (1971).

    Google Scholar 

  • 23.

    Farkas, A., Jakab, T., Tóth, A., Kalmár, A. F. & Dévai, G. Emergence patterns of riverine dragonflies (Odonata: Gomphidae) in Hungary: Variations between habitats and years. Aquat. Insects 34, 77–89 (2012).

    Google Scholar 

  • 24.

    Boda, R. et al. Emergence behaviour of the red listed Balkan Goldenring (Cordulegaster heros Theischinger, 1979) in Hungarian upstreams: Vegetation structure affects the last steps of the larvae. J. Insect Conserv. 19, 547–557 (2015).

    Google Scholar 

  • 25.

    Remsburg, A. J. & Turner, M. G. Aquatic and terrestrial drivers of dragonfly (Odonata) assemblages within and among north-temperate lakes. J. N. Am. Benthol. Soc. 28, 44–56 (2009).

    Google Scholar 

  • 26.

    Remsburg, A. Relative influence of prior life stages and habitat variables on dragonfly (Odonata: Gomphidae) densities among lake sites. Diversity 3, 200–216 (2011).

    Google Scholar 

  • 27.

    Aoki, T. Larval development, emergence and seasonal regulation in Asiagomphus pryeri (Selys) (Odonata: Gomphidae). Hydrobiologia 394, 179–192 (1999).

    Google Scholar 

  • 28.

    Paulson, D. Dragonflies and Damselflies of the East (Princeton University Press, Princeton, 2011).

    Google Scholar 

  • 29.

    Foster, S. E. & Soluk, D. A. Evaluating exuvia collection as a management tool for the federally endangered Hine’s emerald dragonfly, Somatochlora hineana Williamson (Odonata: Cordulidae). Biol. Conserv. 118, 15–20 (2004).

    Google Scholar 

  • 30.

    Raebel, E. M., Merckx, T., Riordan, P., Macdonald, D. W. & Thompson, D. J. The dragonfly delusion: Why it is essential to sample exuviae to avoid biased surveys. J. Insect Conserv. 14, 523–533 (2010).

    Article  Google Scholar 

  • 31.

    Needham, J. G., Westfall, M. J. & May, M. L. Dragonflies of North America: The Odonata (Anisoptera) Fauna of Canada, the Continental United States, Northern Mexico and the Greater Antilles (Scientific Publishers, Jodhpur, 2014).

    Google Scholar 

  • 32.

    Aliberti Lubertazzi, M. A. & Ginsberg, H. S. Persistence of dragonfly exuviae on vegetation and rock substrates. Northeast. Nat. 16, 141–147 (2009).

    Article  Google Scholar 

  • 33.

    Brodin, T. & Johansson, F. Effects of predator-induced thinning and activity changes on life history in a damselfly. Oecologia 132, 316–322 (2002).

    ADS  PubMed  Article  Google Scholar 

  • 34.

    Johansson, F., Crowley, P. H. & Brodin, T. Sexual size dimorphism and sex ratios in dragonflies (Odonata). Biol. J. Linn. Soc. 86, 507–513 (2005).

    Article  Google Scholar 

  • 35.

    Lamit, L. J. et al. Genotype variation in bark texture drives lichen community assembly across multiple environments. Ecology 96, 960–971 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Wolman, M. G. A method of sampling coarse river-bed material. EOS Trans. Am. Geophys. Union 35, 951–956 (1954).

    Article  Google Scholar 

  • 37.

    Richter, B. D., Baumgartner, J. V., Powell, J. & Braun, D. P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 10, 1163–1174 (1996).

    Article  Google Scholar 

  • 38.

    Sabo, J. L., Bastow, J. L. & Power, M. E. Length–mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. J. N. Am. Benthol. Soc. 21, 336–343 (2002).

    Article  Google Scholar 

  • 39.

    Sample, B. E., Cooper, R. J., Greer, R. D. & Whitmore, R. C. Estimation of insect biomass by length and width. Am. Midl. Nat. 129, 234 (1993).

    Article  Google Scholar 

  • 40.

    McCune, B. & Mefford, M. J. PC-ORD. Multivariate Analysis of Ecological Data, Version 5.0 for Windows. MjM Software, Gleneden Beach, Oregon, U.S.A. (2006).

  • 41.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan (2018).

  • 42.

    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna Austria (2018).

  • 43.

    Anderson, M. J. Permutational Multivariate Analysis of Variance (Department of Statistics, University of Auckland, Auckland, 2005).

    Google Scholar 

  • 44.

    Manly, B. F. J. Randomization, Bootstrap and Monte Carlo Methods in Biology 3rd edn. (CRC Press, Boca Raton, 2006).

    Google Scholar 

  • 45.

    Goslee, S. C. & Urban, D. L. The ecodist Package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).

    Article  Google Scholar 

  • 46.

    Crabot, J., Clappe, S., Dray, S. & Datry, T. Testing the Mantel statistic with a spatially-constrained permutation procedure. Methods Ecol. Evol. 10, 532–540 (2019).

    Article  Google Scholar 

  • 47.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 48.

    Clarke, K. R. & Gorley, R. N. PRIMER v7: User Manual/Tutorial 3rd edn. (Plymouth U. K. Primer-E Ltd, Wellington, 2015).

    Google Scholar 

  • 49.

    Baird, I. R. C. & Burgin, S. An emergence study of Petalura gigantea (Odonata: Petaluridae). Int. J. Odonatol. 16, 193–211 (2013).

    Article  Google Scholar 

  • 50.

    Richter, O., Suhling, F., Müller, O. & Kern, D. A model for predicting the emergence of dragonflies in a changing climate. Freshw. Biol. 53, 1868–1880 (2008).

    Google Scholar 

  • 51.

    Kennedy, T. A. et al. Flow management for hydropower extirpates aquatic insects, undermining river food webs. Bioscience 66, 561–575 (2016).

    Google Scholar 

  • 52.

    Worthen, W. B. & Horacek, H. J. The distribution of dragonfly larvae in a South Carolina stream: Relationships with sediment type, body size, and the presence of other larvae. J. Insect Sci. 15, 31–31 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Corbet, P. A Biology of Dragonflies. HF & G. Witherby LTD (Northumberland Press Limited, Newcastle-upon-Tyne, 1962).

    Google Scholar 

  • 54.

    Corbet, P. S. Dragonflies: Behavior and Ecology of Odonata (Cornell University Press, New York, 1999).

    Google Scholar 

  • 55.

    Baxter, C. V., Fausch, K. D. & Saunders, W. C. Tangled webs: Reciprocal flows of invertebrate prey link streams and riparian zones. Freshw. Biol. 50, 201–220 (2005).

    Article  Google Scholar 

  • 56.

    Burdon, F. J. & Harding, J. S. The linkage between riparian predators and aquatic insects across a stream-resource spectrum. Freshw. Biol. 53, 330–346 (2008).

    Google Scholar 

  • 57.

    Grof-Tisza, P., LoPresti, E., Heath, S. K. & Karban, R. Plant structural complexity and mechanical defenses mediate predator–prey interactions in an odonate–bird system. Ecol. Evol. 7, 1650–1659 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Iwata, T. Linking stream habitats and spider distribution: Spatial variations in trophic transfer across a forest–stream boundary. Ecol. Res. 22, 619–628 (2007).

    Article  Google Scholar 

  • 59.

    Jakob, C. & Suhling, F. Risky times? Mortality during emergence in two species of dragonflies (Odonata: Gomphidae, Libellulidae). Aquat. Insects 21, 1–10 (1999).

    Article  Google Scholar 

  • 60.

    Kurata, M. Life history of Gomphys melaenops (Gomphidae). Tombo 14, 6–11 (1971).

    Google Scholar 

  • 61.

    Corbet, P. S. The life-history of the emperor dragonfly anax imperator leach (Odonata: Aeshnidae). J. Anim. Ecol. 26, 1–69 (1957).

    Google Scholar 

  • 62.

    Suhling, F. Temporal patterns of emergence of the riverine dragonfly Onychogomphus uncatus (Odonata: Gomphidae). Hydrobiologia 302, 113–118 (1995).

    Google Scholar 

  • 63.

    Wissmar, R. C. & Beschta, R. L. Restoration and management of riparian ecosystems: A catchment perspective. Freshw. Biol. 40, 571–585 (1998).

    Google Scholar 

  • 64.

    Evans, B. F., Townsend, C. R. & Crowl, T. A. Distribution and abundance of coarse woody debris in some southern New Zealand streams from contrasting forest catchments. N. Z. J. Mar. Freshw. Res. 27, 227–239 (1993).

    Google Scholar 

  • 65.

    Studinski, J. M., Hartman, K. J., Niles, J. M. & Keyser, P. The effects of riparian forest disturbance on stream temperature, sedimentation, and morphology. Hydrobiologia 686, 107–117 (2012).

    Google Scholar 

  • 66.

    Wang, L., Lyons, J., Kanehl, P. & Gatti, R. Influences of watershed land use on habitat quality and biotic integrity in wisconsin streams. Fisheries 22, 6–12 (1997).

    Google Scholar 

  • 67.

    Martin, T. G. & Mcintyre, S. Impacts of livestock grazing and tree clearing on birds of woodland and riparian habitats. Conserv. Biol. 21, 504–514 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 68.

    Ormerod, S. J., Rundle, S. D., Lloyd, E. C. & Douglas, A. A. The influence of riparian management on the habitat structure and macroinvertebrate communities of upland streams draining plantation forests. J. Appl. Ecol. 30, 13–24 (1993).

    Google Scholar 

  • 69.

    Cordero, A. Vertical stratification during emergence in odonates. Not. Odonatol. 4, 103–105 (1995).

    Google Scholar 

  • 70.

    Coppa, G. Notes sur l’émergence d’Epitheca bimaculata (Charpentier)(Odonata: Corduliidae). Martinia 7, 7–16 (1991).

    Google Scholar 

  • 71.

    Miller, P. L. Notes on Ictinogomphus ferox Rambur (Odonata: Gomphidae). Entomologist 97, 2–66 (1964).

    Google Scholar 

  • 72.

    Worthen, W. B. Emergence-site selection by the dragonfly Epitheca spinosa (Hagen). Southeast. Nat. 9, 251–258 (2010).

    Article  Google Scholar 

  • 73.

    Magoba, R. N. & Samways, M. J. Recovery of benthic macroinvertebrate and adult dragonfly assemblages in response to large scale removal of riparian invasive alien trees. J. Insect Conserv. 14, 627–636 (2010).

    Article  Google Scholar 

  • 74.

    Cothran, M. L. & Thorp, J. H. Emergence patterns and size variation of Odonata in a thermal reservoir. Freshw. Invertebr. Biol. 1, 30–39 (1982).

    Article  Google Scholar 

  • 75.

    Mccauley, S. J., Hammond, J. I., Frances, D. N. & Mabry, K. E. Effects of experimental warming on survival, phenology, and morphology of an aquatic insect (Odonata). Ecol. Entomol. 40, 211–220 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    McCauley, S. J., Hammond, J. I. & Mabry, K. E. Simulated climate change increases larval mortality, alters phenology, and affects flight morphology of a dragonfly. Ecosphere 9, e02151 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    de Nadaï-Monoury, E., Gilbert, F. & Lecerf, A. Forest canopy cover determines invertebrate diversity and ecosystem process rates in depositional zones of headwater streams. Freshw. Biol. 59, 1532–1545 (2014).

    Article  Google Scholar 

  • 78.

    Flenner, I. & Sahlén, G. Dragonfly community re-organisation in boreal forest lakes: Rapid species turnover driven by climate change?. Insect Conserv. Divers. 1, 169–179 (2008).

    Article  Google Scholar 

  • 79.

    Harper, M. P. & Peckarsky, B. L. Emergence cues of a mayfly in a high-altitude stream ecosystem: Potential response to climate change. Ecol. Appl. 16, 612–621 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 80.

    Jonsson, M. et al. Climate change modifies the size structure of assemblages of emerging aquatic insects. Freshw. Biol. 60, 78–88 (2015).

    Article  Google Scholar 

  • 81.

    Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 82.

    Sala, O. E. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    CAS  Article  Google Scholar 

  • 83.

    Likens, G. E. & Bormann, F. H. Linkages between terrestrial and aquatic ecosystems. Bioscience 24, 447–456 (1974).

    Article  Google Scholar 

  • 84.

    England, L. E. & Rosemond, A. D. Small reductions in forest cover weaken terrestrial-aquatic linkages in headwater streams. Freshw. Biol. 49, 721–734 (2004).

    Article  Google Scholar 

  • 85.

    Lafage, D. et al. Local and landscape drivers of aquatic-to-terrestrial subsidies in riparian ecosystems: A worldwide meta-analysis. Ecosphere 10, e02697 (2019).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    A controllable membrane to pull carbon dioxide out of exhaust streams

    More than a meal