in

Salinity and temperature increase impact groundwater crustaceans

  • 1.

    Gaston, L., Lapworth, D. J., Stuart, M. & Amscheidt, J. Prioritization approaches for substances of emerging concern in groundwater: a critical review. Environ. Sci. Technol. 53(11), 6107–6122. https://doi.org/10.1021/acs.est.8b04490 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 2.

    Castaño-Sánchez, A., Hose, G. C. & Reboleira, A. S. P. S. Ecotoxicological effects of anthropogenic stressors in subterranean organisms: a review. Chemosphere 244, 125422. https://doi.org/10.1016/j.chemosphere.2019.125422 (2020).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 3.

    Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69(8), 641–650. https://doi.org/10.1093/biosci/biz064 (2019).

    Article  Google Scholar 

  • 4.

    Foster, S. S. D. & Chilton, P. J. Groundwater: the processes and global significance of aquifer degradation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358(1440), 1957–1972. https://doi.org/10.1098/rstb.2003.1380 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Masterson, J. P. & Garabedian, S. P. Effects of sea-level rise on ground water flow in a coastal aquifer system. Groundwater 45(2), 209–217. https://doi.org/10.1111/j.1745-6584.2006.00279.x (2007).

    CAS  Article  Google Scholar 

  • 6.

    Ferguson, G. & Gleeson, T. Vulnerability of coastal aquifers to groundwater use and climate change. Nat. Clim. Change 2(5), 342. https://doi.org/10.1038/nclimate1413 (2012).

    ADS  Article  Google Scholar 

  • 7.

    Robinson, H. K. & Hasenmueller, E. A. Transport of road salt contamination in karst aquifers and soils over multiple timescales. Sci. Total Environ. 603, 94–108. https://doi.org/10.1016/j.apgeochem.2017.01.018 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 8.

    Davis, J., Sim, L. & Chambers, J. Multiple stressors and regime shifts in shallow aquatic ecosystems in antipodean landscapes. Freshw. Biol. 55, 5–18. https://doi.org/10.1111/j.1365-2427.2009.02376.x (2010).

    Article  Google Scholar 

  • 9.

    Davis, J. et al. When trends intersect: the challenge of protecting freshwater ecosystems under multiple land use and hydrological intensification scenarios. Sci. Total Environ. 534, 65–78. https://doi.org/10.1016/j.scitotenv.2015.03.127 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 10.

    Bennetts, D. A., Webb, J. A., Stone, D. J. M. & Hill, D. M. Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. J. Hydrol. 323(1–4), 178–192. https://doi.org/10.1016/j.jhydrol.2005.08.023 (2006).

    ADS  Article  Google Scholar 

  • 11.

    Cartwright, I., Weaver, T. R., Stone, D. & Reid, M. Constraining modern and historical recharge from bore hydrographs, 3H, 14C, and chloride concentrations: applications to dual-porosity aquifers in dryland salinity areas, Murray Basin, Australia. J. Hydrol. 332(1–2), 69–92. https://doi.org/10.1016/j.jhydrol.2006.06.034 (2007).

    ADS  Article  Google Scholar 

  • 12.

    Bann, G. & Field, J. S. Dryland salinity, regolith and biodiversity: problems and opportunities for mitigation and remediation. Proceedings of Regolith 2005—Ten Years of CRC LEME, 8–12 (2005).

  • 13.

    National Land and Water Resources Audit. A Summary of the National Land and Water Resources Audit’s ‘Australian Dryland Salinity Assessment 2000’ NLWRA (Canberra, Commonwealth of Australia, 2001).

    Google Scholar 

  • 14.

    Velasco, J. et al. Effects of salinity changes on aquatic organisms in a multiple stressor context. Philos. Trans. R. Soc. B. Biol. Sci. 374, 20180011. https://doi.org/10.1098/rstb.2018.0011 (2018).

    CAS  Article  Google Scholar 

  • 15.

    Di Lorenzo, T. & Galassi, D. Effect of temperature rising on the stygobitic crustacean species Diacyclops belgicus: does global warming affect groundwater populations?. Water 9, 1–12. https://doi.org/10.3390/w9120951 (2017).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B Biol. Sci. 267, 739–745. https://doi.org/10.1098/rspb.2000.1065 (2000).

    CAS  Article  Google Scholar 

  • 17.

    Hughes, L. Climate change and Australia: trends, projections and impacts. Aust. Ecol. 28, 423–443. https://doi.org/10.1046/j.1442-9993.2003.01300.x (2003).

    Article  Google Scholar 

  • 18.

    Badino, G. Cave temperatures and global climatic change. Int. J. Speleol. 33(1), 10 (2004).

    Google Scholar 

  • 19.

    Griebler, C. et al. Ecological assessment of groundwater ecosystems—vision or illusion?. Ecol. Eng. 36, 1174–1190. https://doi.org/10.1016/j.ecoleng.2010.01.010 (2010).

    Article  Google Scholar 

  • 20.

    Griebler, C. & Avramov, M. Groundwater ecosystem services: a review. Freshw. Sci. 34, 355–367. https://doi.org/10.1086/679903 (2015).

    Article  Google Scholar 

  • 21.

    Sket, B. Collecting and processing crustaceans of subterranean habitats. J. Crustacean. Biol. 38, 380–384. https://doi.org/10.1093/jcbiol/rux125 (2018).

    Article  Google Scholar 

  • 22.

    Hart, R. C. & Bychek, E. A. Body size in freshwater planktonic crustaceans: an overview of extrinsic determinants and modifying influences of biotic interactions. Hydrobiologia 668, 61–108. https://doi.org/10.1007/s10750-010-0400-y (2011).

    CAS  Article  Google Scholar 

  • 23.

    Strong, D. R. Jr. Life history variation among populations of an amphipod (Hyalella azteca). Ecology 53(6), 1103–1111. https://doi.org/10.2307/1935422 (1972).

    Article  Google Scholar 

  • 24.

    Wong, L. C., Kwok, K. W., Leung, K. M. & Wong, C. K. Relative sensitivity distribution of freshwater planktonic crustaceans to trace metals. Hum. Ecol. Risk Assess. 15(6), 1335–1345. https://doi.org/10.1080/10807030903307115 (2009).

    CAS  Article  Google Scholar 

  • 25.

    Hayasaka, D., Korenaga, T., Suzuki, K., Sánchez-Bayo, F. & Goka, K. Differences in susceptibility of five cladoceran species to two systemic insecticides, imidacloprid and fipronil. Ecotoxicology 21(2), 421–427. https://doi.org/10.1007/s10646-011-0802-2 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 26.

    Sánchez-Bayo, F. Comparative acute toxicity of organic pollutants and reference values for crustaceans. I. Branchiopoda, Copepoda and Ostracoda. Environ. Pollut. 139(3), 385–420. https://doi.org/10.1016/j.envpol.2005.06.016 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 27.

    Peck, L. S., Clark, M. S., Morley, S. A., Massey, A. & Rossetti, H. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct. Ecol. 23(2), 248–256. https://doi.org/10.1111/j.1365-2435.2008.01537.x (2009).

    Article  Google Scholar 

  • 28.

    Nielsen, D. L., Brock, M. A., Rees, G. N. & Baldwin, D. S. Effects of increasing salinity on freshwater ecosystems in Australia. Aust. J. Bot. 51(6), 655–665. https://doi.org/10.1071/BT02115 (2003).

    Article  Google Scholar 

  • 29.

    Menció, A., Korbel, K. L. & Hose, G. C. River-aquifer interactions and their relationship to stygofauna assemblages: a case study of the Gwydir River alluvial aquifer (New South Wales, Australia). Sci. Total Environ. 479–480, 292–305. https://doi.org/10.1016/j.scitotenv.2014.02.009 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 30.

    Shapouri, M. et al. The variation of stygofauna along a gradient of salinization in a coastal aquifer. Hydrol. Res. 47(1), 89–103. https://doi.org/10.2166/nh.2015.153 (2015).

    Article  Google Scholar 

  • 31.

    Schulz, C., Steward, A. L. & Prior, A. Stygofauna presence within fresh and highly saline aquifers of the border rivers region in southern Queensland. Proc. Royal Soc. Qld. 118, 27–35 (2013).

    Google Scholar 

  • 32.

    Reboleira, A. S. P. S., Abrantes, N. A., Oromí, P. & Gonçalves, F. Acute toxicity of copper sulfate and potassium dichromate on stygobiont Proasellus: general aspects of groundwater ecotoxicology and future perspectives. Water Air Soil Pollut. 224(5), 1550. https://doi.org/10.1007/s11270-013-1550-0 (2013).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Peck, L. S., Morley, S. A., Richard, J. & Clark, M. S. Acclimation and thermal tolerance in antarctic marine ectotherms. J. Exp. Biol. 217(1), 16–22. https://doi.org/10.1242/jeb.089946 (2014).

    Article  PubMed  Google Scholar 

  • 34.

    Issartel, J., Hervant, F., Voituron, Y., Renault, D. & Vernon, P. Behavioural, ventilatory and respiratory responses of epigean and hypogean crustaceans to different temperatures. Comp. Biochem. Phys. A. 141, 1–7. https://doi.org/10.1016/j.cbpb.2005.02.013 (2005).

    CAS  Article  Google Scholar 

  • 35.

    Mermillod-Blondin, F. et al. Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment. J. Exp. Biol. 21(9), 1683–1694. https://doi.org/10.1242/jeb.081232 (2013).

    Article  Google Scholar 

  • 36.

    Terblanche, J. S., Deere, J. A., Clusella-Trullas, S., Janion, C. & Chown, S. L. Critical thermal limits depend on methodological context. Proc. R. Soc. B Biol. Sci. 274(1628), 2935–2943. https://doi.org/10.1098/rspb.2007.0985 (2007).

    Article  Google Scholar 

  • 37.

    Chown, S. L., Jumbam, K. R., Sørensen, J. G. & Terblanche, J. S. Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Funct. Ecol. 23(1), 133–140. https://doi.org/10.1111/j.1365-2435.2008.01481.x (2009).

    Article  Google Scholar 

  • 38.

    Verberk, W. C. E. P. et al. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comp. Biochem. Phys. A. 192, 64–78. https://doi.org/10.1016/j.cbpa.2015.10.020 (2016).

    CAS  Article  Google Scholar 

  • 39.

    Zhu, K. & Grathwohl, P. Groundwater temperature evolution in the subsurface urban heat island of Cologne, Germany. Hydrol. Process. 29(6), 965–978. https://doi.org/10.1002/hyp.10209 (2015).

    ADS  Article  Google Scholar 

  • 40.

    Griebler, C. et al. Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes. Environ. Earth Sci. 75, 1391. https://doi.org/10.1007/s12665-016-6207-z (2016).

    CAS  Article  Google Scholar 

  • 41.

    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873. https://doi.org/10.1111/brv.12480 (2019).

    Article  PubMed  Google Scholar 

  • 42.

    Juan, C., Guzik, M. T., Jaume, D. & Cooper, S. J. Evolution in caves: Darwin’s ‘wrecks of ancient life’ in the molecular era. Mol. Ecol. 19(18), 3865–3880. https://doi.org/10.1111/j.1365-294X.2010.04759.x (2010).

    Article  PubMed  Google Scholar 

  • 43.

    Song, M. Y. & Brown, J. J. Osmotic effects as a factor modifying insecticide toxicity on Aedes and Artemia. Ecotox. Environ. Safe. 41(2), 195–202. https://doi.org/10.1006/eesa.1998.1693 (1998).

    CAS  Article  Google Scholar 

  • 44.

    Wang, J., Grisle, S. & Schlenk, D. Effects of salinity on Aldicarb toxicity in juvenile rainbow trout (Oncorhynchus mykiss) and striped bass (Morone saxatilis x chrysops). Toxicol. Sci. 64(2), 200–207. https://doi.org/10.1093/toxsci/64.2.200 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 45.

    Cairns, J., Heath, A. G. & Parker, B. C. The effects of temperature upon the toxicity of chemicals to aquatic organisms. Hydrobiologia 47(1), 135–171. https://doi.org/10.1007/BF00036747 (1975).

    CAS  Article  Google Scholar 

  • 46.

    Schiedek, D., Sundelin, B., Readman, J. W. & Macdonald, R. W. Interactions between climate change and contaminants. Mar. Pollut. Bull. 54(12), 1845–1856. https://doi.org/10.1016/j.marpolbul.2007.09.020 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 47.

    Hose, G. C., Symington, K., Lott, M. & Lategan, M. The toxicity of arsenic (III), chromium (VI) and zinc to groundwater copepods. Environ. Sci. Pollut. Res. 23, 18704–18713. https://doi.org/10.1007/s11356-016-7046-x (2016).

    CAS  Article  Google Scholar 

  • 48.

    Asmyhr, M. G., Hose, G. C., Graham, P. & Stow, A. Fine-scaled genetics of subterranean syncarids. Freshw. Biol. 59, 1–11. https://doi.org/10.1111/fwb.12239 (2014).

    Article  Google Scholar 

  • 49.

    Galassi, D. M., Huys, R. & Reid, J. W. Diversity, ecology and evolution of groundwater copepods. Freshw. Biol. 54(4), 691–708. https://doi.org/10.1111/j.1365-2427.2009.02185.x (2009).

    Article  Google Scholar 

  • 50.

    Schminke, H. K. & Cho, J. L. Biology and ecology of Parabathynellidae (Crustacea, Bathynellacea)—a review. Crustaceana 86(10), 1266–1273. https://doi.org/10.1163/15685403-00003200 (2013).

    Article  Google Scholar 

  • 51.

    ASTM (American Society for Testing and Materials). Standard guide for Daphnia magna life-cycle toxicity tests. Annual Book of ASTM Standards, Report E1193–97. (Philadelphia, USA, 1997).

  • 52.

    ISO (Internacional Organization for Standardization). Water quality: determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)—acute toxicity test. ISO 6341 (Geneva 1996).

  • 53.

    OECD (Organization for the Economic Cooperation and Development). Guideline for testing of chemicals Daphnia sp., Acute Immobilisation Test. OECD test guideline 202. (Paris, 2004).

  • 54.

    Di Lorenzo, T. et al. Recommendations for ecotoxicity testing with stygobiotic species in the framework of groundwater environmental risk assessment. Sci. Total Environ. 681, 292–304. https://doi.org/10.1016/j.scitotenv.2019.05.030 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 55.

    Rizzo, V., Sánchez-Fernández, D., Fresneda, J., Cieslak, A. & Ribera, I. Lack of evolutionary adjustment to ambient temperature in highly specialized cave beetles. Evol. Biol. 15, 10. https://doi.org/10.1186/s12862-015-0288-2 (2015).

    Article  Google Scholar 

  • 56.

    Ritz, C. & Streibig, J. C. Bioassay for allelochemicals: examples with RJ Stat. Software (2016).

  • 57.

    Ripley, B. D. & Venables, W. N. Feed-forward neural networks and multinomial log-linear models. R package version 7.3–12. (2018).

  • 58.

    Team, R. R Development core team. R. A. Lang. Environ. Stat. Comput. 55, 275–286 (2013).

    Google Scholar 

  • 59.

    EMA (European Medicines Agency). Guidelines on the Environmental Risk Assessment of Medicinal Products for Human Use. Doc. Ref. 627 Risks of Veterinary Medicinal Products in Groundwater (2006).

  • 60.

    EC (European Commission). Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) N. 1488/94 on Risk Assessment for Existing Substances. Office for official publications of the European communities. (Luxembourg, 2003).

  • 61.

    EC (European Commission). Common Implementation Strategy for the Water Directive (2000/60/EC). Technical Guidance Document for Deriving Environmental Quality Standards. Technical Report 055 (2011).

  • 62.

    Hose, G. C. Assessing the need for groundwater quality guidelines for pesticides using the species sensitivity distribution approach. Hum. Ecol. Risk. Assess. 11, 951–966. https://doi.org/10.1080/10807030500257788 (2005).

    CAS  Article  Google Scholar 

  • 63.

    Hose, G. C., Asmyhr, M. G., Cooper, S. J. B. & Humphreys, W. F. Down Under Down Under: Austral Groundwater Life. In Austral Ark (eds Stow, A. et al.) 512–536 (Cambridge University Press, Cambridge, 2015).

    Google Scholar 

  • 64.

    USEPA. CADDIS Volume 4: SSD Generator V1. Available at https://www.epa.gov/caddis-vol4/caddis-volume-4-data-analysis-download-software#tab-3. Accessed 4 Feb 2020.


  • Source: Ecology - nature.com

    Engineering superpowered organisms for a more sustainable world

    Letter from President Reif: Tackling the grand challenges of climate change