in

Schrenk spruce leaf litter decomposition varies with snow depth in the Tianshan Mountains

  • 1.

    Correa Dias, A. T., Cornelissen, J. H. C. & Berg, M. P. Litter for life: Assessing the multifunctional legacy of plant traits. J. Ecol. 105(5), 1163–1168 (2017).

    Article  Google Scholar 

  • 2.

    Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25(6), 372–380 (2010).

    Article  PubMed  Google Scholar 

  • 3.

    Grootemaat, S., Wright, I. J., van Bodegom, P. M., Cornelissen, J. H. C. & Cornwell, W. K. Burn or rot: Leaf traits explain why flammability and decomposability are decoupled across species. Funct. Ecol. 29(11), 1486–1497 (2015).

    Article  Google Scholar 

  • 4.

    Berg, B. Litter decomposition and organic matter turnover in northern forest soils. For. Ecol. Manag. 133(1–2), 13–22 (2000).

    Article  Google Scholar 

  • 5.

    Hobbie, S. E., Schimel, J. P., Trumbore, S. E. & Randerson, J. R. Controls over carbon storage and turnover in high-latitude soils. Glob. Change Biol. 61, 196–210 (2000).

    Article  Google Scholar 

  • 6.

    Vezzani, F. M. et al. The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions. Soil Tillage Res. 175, 139–149 (2018).

    Article  Google Scholar 

  • 7.

    Schimel, J. P. & Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 85(3), 591–602 (2004).

    Article  Google Scholar 

  • 8.

    Siebers, M. et al. Disruption of microbial community composition and identification of plant growth promoting microorganisms after exposure of soil to rapeseed-derived glucosinolates. PLoS ONE 13, e02001607 (2018).

    Article  CAS  Google Scholar 

  • 9.

    Austin, A. T. & Zanne, A. E. Whether in life or in death: Fresh perspectives on how plants affect biogeochemical cycling. J. Ecol. 103(6), 1367–1371 (2015).

    CAS  Article  Google Scholar 

  • 10.

    Hattenschwiler, S., Tiunov, A.V. and Scheu, S. Biodiversity and litter decomposition interrestrial ecosystems. In Annual Review of Ecology Evolution and Systematics. Annual Reviews, Palo Alto, 191–218 (2005).

  • 11.

    Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R. & Wood, S. A. Understanding the dominant controls on litter decomposition. J. Ecol. 104(1), 229–238 (2016).

    CAS  Article  Google Scholar 

  • 12.

    Strickland, M. S., Keiser, A. D. & Bradford, M. A. Climate history shapes contemporary leaf litter decomposition. Biogeochemistry 122(2–3), 165–174 (2015).

    Article  Google Scholar 

  • 13.

    Waring, B. G. A meta-analysis of climatic and chemical controls on leaf litter decay rates in tropical forests. Ecosystems 15(6), 999–1009 (2012).

    CAS  Article  Google Scholar 

  • 14.

    Vitousek, P. M., Turner, D. R., Parton, W. J. & Sanford, R. L. Litter decomposition on the Mauna-Loa environmental matrix, Hawaii—patterns, mechanisms, and models. Ecology 75(2), 418–429 (1994).

    Article  Google Scholar 

  • 15.

    Blok, D., Elberling, B. & Michelsen, A. Initial stages of tundra shrub litter decomposition may be accelerated by deeper winter snow but slowed down by spring warming. Ecosystems 19(1), 155–169 (2016).

    CAS  Article  Google Scholar 

  • 16.

    Carbognani, M., Petraglia, A. & Tomaselli, M. Warming effects and plant trait control on the early-decomposition in alpine snowbeds. Plant Soil 376(1–2), 277–290 (2014).

    CAS  Article  Google Scholar 

  • 17.

    Wu, Q. Q. Effects of snow depth manipulation on the releases of carbon, nitrogen and phosphorus from the foliar litter of two temperate tree species. Sci. Total Environ. 643, 1357–1365 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 18.

    Saccone, P. et al. The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. Plant Soil 363(1–2), 215–229 (2013).

    CAS  Article  Google Scholar 

  • 19.

    Makoto, K. et al. Winter climate change in plant–soil systems: Summary of recent findings and future perspectives. Ecol. Res. 29(4), 593–606 (2014).

    CAS  Article  Google Scholar 

  • 20.

    Bratt, A. R. et al. Contribution of leaf litter to nutrient export during winter months in an urban residential watershed. Environ. Sci. Technol. 51(6), 3138–3147 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 21.

    Wu, Q. Q. et al. Effect of seasonal snow cover on litter decomposition in alpine forest. Chin. J. Plant Ecol. 37(04), 296–305 (2013).

    Article  Google Scholar 

  • 22.

    Christenson, L. M., Mitchell, M. J., Groffman, P. M. & Lovett, G. M. Winter climate change implications for decomposition in northeastern forests: Comparisons of sugar maple litter with herbivore fecal inputs. Glob. Change Biol. 16(9), 2589–2601 (2010).

    Google Scholar 

  • 23.

    Wu, Q. Q. & Wang, C. K. Effects of changes in seasonal snow-cover on litter decomposition and soil nitrogen dynamics in forests. Chin. J. Appl. Ecol. 29(07), 2422–2432 (2018).

    Google Scholar 

  • 24.

    Groffman, P. M. et al. Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry 56(2), 191–213 (2001).

    CAS  Article  Google Scholar 

  • 25.

    He, W. et al. Lignin degradation in foliar litter of two shrub species from the gap center to the closed canopy in an alpine fir forest. Ecosystems 19(1), 115–128 (2016).

    CAS  Article  Google Scholar 

  • 26.

    DeMarco, J., Mack, M. C. & Bret-Harte, M. S. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. Ecology 95(7), 1861–1875 (2014).

    Article  PubMed  Google Scholar 

  • 27.

    Edwards, A. C., Scalenghe, R. & Freppaz, M. Changes in the seasonal snow cover of alpine regions and its effect on soil processes: A review. Quatern. Int. 162, 172–181 (2007).

    Article  Google Scholar 

  • 28.

    Huo, Y. et al. Climate-growth relationships of Schrenk spruce (Picea schrenkiana) along an altitudinal gradient in the western Tianshan mountains, northwest China. Trees-Struct. Funct. 31(2), 429–439 (2017).

    MathSciNet  Article  Google Scholar 

  • 29.

    Chen, X., Gong, L. & Liu, Y. The ecological stoichiometry and interrelationship between litter and soil under seasonal snowfall in Tianshan Mountain. Ecosphere 9, e0252011 (2018).

    Google Scholar 

  • 30.

    Lu, H., Wei, W., Liu, M., Han, X. & Hong, W. Energy budget over seasonal snow surface at an open site and beneath forest canopy openness during the snowmelt period in western Tianshan Mountains, China. J. Mount. Sci. 12(2), 298–312 (2015).

    Article  Google Scholar 

  • 31.

    Anderson, J. M. & Ingram, J. S. I. (eds). Tropical soil biology and fertility: A handbook of methods, 2nd edn, 1–221 (Oxford, London, 1993).

  • 32.

    Olson, J. S. Energy-storage and balance of producers and decomposers in ecological-systems. Ecology 44(2), 322–330 (1963).

    Article  Google Scholar 

  • 33.

    Garcia-Palacios, P., Shaw, E. A., Wall, D. H. & Haettenschwiler, S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol. Lett. 19(5), 554–563 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Salinas, N. et al. The sensitivity of tropical leaf litter decomposition to temperature: Results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytol. 189(4), 967–977 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Wang, J. et al. High night-time humidity and dissolved organic carbon content support rapid decomposition of standing litter in a semi-arid landscape. Funct. Ecol. 31(8), 1659–1668 (2017).

    Article  Google Scholar 

  • 36.

    Li, H. et al. Effects of forest gaps on litter lignin and cellulose dynamics vary seasonally in an alpine forest. Forests 7(2), 27 (2016).

    Article  Google Scholar 

  • 37.

    Mcclaugherty, C. & Berg, B. Cellulose, lignin and nitrogen concentrations as rate regulating factors in late stages of forest litter decomposition. Pedobiologia 30(2), 101–112 (1987).

    CAS  Google Scholar 

  • 38.

    Bosco, T., Beatriz Bertiller, M. & Lorena Carrera, A. Combined effects of litter features, UV radiation, and soil water on litter decomposition in denuded areas of the arid Patagonian Monte. PLANT AND SOIL 406(1–2), 71–82 (2016).

    CAS  Article  Google Scholar 

  • 39.

    Sheng, J. et al. Changes in the chemical composition of young Chinese fir wood exposed to different soil temperature and water content. Cellulose 27(7), 4067–4077 (2020).

    CAS  Article  Google Scholar 

  • 40.

    Puissant, J. et al. Seasonal influence of climate manipulation on microbial community structure and function in mountain soils. Soil Biol. Biochem. 80, 296–305 (2015).

    CAS  Article  Google Scholar 

  • 41.

    Osono, T. Leaf litter decomposition of 12 tree species in a subtropical forest in Japan. Ecol. Res. 32(3), 413–422 (2017).

    ADS  Article  Google Scholar 

  • 42.

    Wu, F., Yang, W., Zhang, J. & Deng, R. Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecol. Int. J. Ecol. 36(1), 135–140 (2010).

    ADS  Article  Google Scholar 

  • 43.

    Bradley, D. C. & Ormerod, S. J. Long-term effects of catchment liming on invertebrates in upland streams. Freshw. Biol. 47(1), 161–171 (2002).

    CAS  Article  Google Scholar 

  • 44.

    Guesewell, S. & Gessner, M. O. N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct. Ecol. 23, 211–219 (2009).

    Article  Google Scholar 

  • 45.

    Aerts, R., Callaghan, T. V., Dorrepaal, E., van Logtestijn, R. S. P. & Cornelissen, J. H. C. Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species. Oecologia 170(3), 809–819 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Bokhorst, S., Metcalfe, D. B. & Wardle, D. A. Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biol. Biochem. 62, 157–164 (2013).

    CAS  Article  Google Scholar 

  • 47.

    Wipf, S. & Rixen, C. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res 29(1), 95–109 (2010).

    Article  Google Scholar 

  • 48.

    Buckeridge, K. M. & Grogan, P. Deepened snow alters soil microbial nutrient limitations in arctic birch hummock tundra. Appl. Soil. Ecol. 39(2), 210–222 (2008).

    Article  Google Scholar 

  • 49.

    Shibata, H., Hasegawa, Y., Watanabe, T. & Fukuzawa, K. Impact of snowpack decrease on net nitrogen mineralization and nitrification in forest soil of northern Japan. Biogeochemistry 116(1–3), 69–82 (2013).

    CAS  Article  Google Scholar 

  • 50.

    Blair, J. M., Parmelee, R. W. & Beare, M. H. Decay-rates, nitrogen fluxes, and decomposer communities of single-species and mixed-species foliar litter. Ecology 71(5), 1976–1985 (1990).

    Article  Google Scholar 

  • 51.

    Yue, K. et al. Cellulose dynamics during foliar litter decomposition in an alpine forest meta-ecosystem. Forests 7(1768), 176 (2016).

    Article  Google Scholar 

  • 52.

    Boberg, J. B., Finlay, R. D., Stenlid, J., Ekblad, A. & Lindahl, B. D. Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter. PLoS ONE 9, e928973 (2014).

    Article  CAS  Google Scholar 

  • 53.

    He, Y., Cornelissen, J. H. C., Zhong, Z., Dong, M. & Jiang, C. How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium. Environ. Scie. Pollut. Res. 24(10), 9791–9801 (2017).

    CAS  Article  Google Scholar 

  • 54.

    Uchida, M. et al. Microbial activity and litter decomposition under snow cover in a cool-temperate broad-leaved deciduous forest. Agric. For. Meteorol. 134(1–4), 102–109 (2005).

    ADS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale

    Power-free system harnesses evaporation to keep items cool