in

Seasonal modulation of phytoplankton biomass in the Southern Ocean

  • 1.

    Parekh, P., Dutkiewicz, S., Follows, M. J. & Ito, T. Atmospheric carbon dioxide in a less dusty world. Geophys. Res. Lett. 33, L03610 (2006).

  • 2.

    Longhurst, A. R. In Ecological Geography of the Sea (Second Edition) (ed Longhurst, A. R.) 19– 34 (Academic Press, Burlington, 2007).

  • 3.

    Sverdrup, H. U. On conditions for the vernal blooming of phytoplankton. J. du Cons. Int. pour l’ Exploration de. la Mer. 18, 287–295 (1953).

    Article  Google Scholar 

  • 4.

    Gran, H. H. & Braarud, T. A quantitative study of the phytoplankton in the Bay of Fundy and the Gulf of Maine (including observations on hydrography, chemistry and turbidity). J. Biol. Board Can. 1, 279–467 (1935).

    CAS  Article  Google Scholar 

  • 5.

    Gran, H. H. Phytoplankton. methods and problems. J. du Cons. Int. Pour l’Exoploration de. la Mer. 7, 343–358 (1932).

    Article  Google Scholar 

  • 6.

    Atkins, W. R. G. The chemistry of sea-water in relation to the productivity of the sea. Sci. Prog. 7, 298–312 (1932).

    Google Scholar 

  • 7.

    Uchida, T. et al. Southern Ocean phytoplankton blooms observed by biogeochemical floats. J. Geophys. Res.: Oceans 124 (2019).

  • 8.

    Banse, K. In Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G., Woodhead, A. & Vivirito, K.) vol. 43, 409–440 (Springer US, Boston, MA, 1992).

  • 9.

    Evans, G. T. & Parslow, J. S. A model of annual plankton cycles. Biol. Oceanogr. 3, 327–347 (1985).

    Google Scholar 

  • 10.

    Behrenfeld, M. J. & Boss, E. S. Student’s tutorial on bloom hypotheses in the context of phytoplankton annual cycles. Glob. Change Biol. 24, 55–77 (2018).

    ADS  Article  Google Scholar 

  • 11.

    Behrenfeld, M. J. Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms. Ecology 91, 977–989 (2010).

    PubMed  Article  Google Scholar 

  • 12.

    Boss, E. & Behrenfeld, M. In situ evaluation of the initiation of the North Atlantic phytoplankton bloom. Geophys. Res. Lett. https://doi.org/10.1029/2010GL044174. L18603 (2010).

  • 13.

    Mignot, A., Ferrari, R. & Claustre, H. Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom. Nat. Commun. 9, 190 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Westberry, T. K. et al. Annual cycles of phytoplankton biomass in the subarctic Atlantic and Pacific Ocean. Glob. Biogeochem. Cycles 30, 175–190 (2016).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Behrenfeld, M. J. et al. Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nat. Geosci. 10, 118–122 (2017).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Arrigo, K. R., van Dijken, G. L. & Bushinsky, S. Primary production in the Southern Ocean, 1997-2006. J. Geophys. Res.: Oceans https://doi.org/10.1029/2007JC004551. C08004 (2008).

  • 17.

    Buitenhuis, E. T., Hashioka, T. & Quéré, C. L. Combined constraints on global ocean primary production using observations and models. Glob. Biogeochem. Cycles 27, 847–858 (2013).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Behrenfeld, M. J. Climate-mediated dance of the plankton. Nat. Clim. Change 4, 880–887 (2014).

    ADS  Article  Google Scholar 

  • 19.

    Behrenfeld, M. J. & Milligan, A. J. Photophysiological expressions of iron stress in phytoplankton. Annu. Rev. Mar. Sci. 5, 217–246 (2013).

    Article  Google Scholar 

  • 20.

    Banse, K. Grazing and zooplankton production as key controls of phytoplankton production in the open ocean. Oceanography 7, 13–20 (1994).

    Article  Google Scholar 

  • 21.

    Behrenfeld, M. J., Doney, S. C., Lima, I., Boss, E. S. & Siegel, D. A. Annual cycles of ecological disturbance and recovery underlying the subarctic atlantic spring plankton bloom. Glob. Biogeochem. Cycles 27, 526–540 (2013).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Zehr, J. P. & Ward, B. B. Nitrogen cycling in the ocean: new perspectives on processes and paradigms. Appl. Environ. Microbiol. 68, 1015–1024 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. http://www.nature.com/doifinder/10.1038/ngeo1765 (2013).

  • 24.

    Wong, A. P. S. & Riser, S. C. Profiling float observations of the upper ocean under sea ice off the wilkes land coast of Antarctica. J. Phys. Oceanogr. 41, 1102–1115 (2011).

    ADS  Article  Google Scholar 

  • 25.

    Johnson, K. S. et al. Biogeochemical sensor performance in the SOCCOM profiling float array. J. Geophys. Res.: Oceans 122, 6416–6436 (2017).

    ADS  Article  Google Scholar 

  • 26.

    Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408–1408 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 27.

    Arrigo, K. R. et al. Early spring phytoplankton dynamics in the western Antarctic Peninsula. J. Geophys. Res.: Oceans 122, 9350–9369 (2017).

    ADS  Article  Google Scholar 

  • 28.

    Geider, R. J., Platt, T. & Raven, J. Size dependence of growth and photosynthesis in diatoms: a synthesis. Mar. Ecol. Prog. Ser. 30, 93–104 (1986).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Martin, J., Gordon, R. M. & Fitzwater, S. E. Iron in Antarctic waters. Nature 345, 156–158 (1990).

  • 30.

    Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993-2005: Synthesis and future directions. Science 315, 612–617 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 31.

    Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Glob. Biogeochem. Cycles 18, GB3003 (2004).

    ADS  Article  CAS  Google Scholar 

  • 32.

    Riebesell, U., Körtzinger, A. & Oschlies, A. Sensitivities of marine carbon fluxes to ocean change. Proc. Natl Acad. Sci. USA 106, 20602–20609 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 33.

    Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean’s least productive waters are expanding. Geophys. Res. Lett. 35, L03618 (2008).

    ADS  Article  Google Scholar 

  • 34.

    Smith, M. J., Tittensor, D. P., Lyutsarev, V. & Murphy, E. Inferred support for disturbance-recovery hypothesis of north atlantic phytoplankton blooms. J. Geophys. Res.: Oceans 120, 7067–7090 (2015).

    ADS  Article  Google Scholar 

  • 35.

    Yang, B. et al. Phytoplankton phenology in the North Atlantic: insights from profiling float measurements. Front. Mar. Sci. 7, 139 (2020).

    ADS  Article  Google Scholar 

  • 36.

    Gruber, N. et al. Oceanic sources, sinks, and transport of atmospheric CO2. Glob. Biogeochem. Cycles 23 (2009).

  • 37.

    Gruber, N., Landschützer, P. & Lovenduski, N. S. The variable Southern Ocean carbon sink. Annu. Rev. Mar. Sci. 11, 159–186 (2019).

    ADS  Article  Google Scholar 

  • 38.

    Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 39.

    Pahlow, M. & Prowe, F. Model of optimal current feeding in zooplankton. Mar. Ecol. Prog. Ser. 403, 129–144 (2010).

    ADS  Article  Google Scholar 

  • 40.

    Johnson, K. S. et al. SOCCOM float data — Snapshot 2019-03-12. In Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) Float Data Archive (UC San Diego Library Digital Collections, 2019).

  • 41.

    Haëntjens, N., Boss, E. & Talley, L. D. Revisiting ocean color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats. J. Geophys. Res.: Oceans https://doi.org/10.1002/2017JC012844 (2017).

  • 42.

    Graff, J. R. et al. Analytical phytoplankton carbon measurements spanning diverse ecosystems. Deep Sea Res. Part I: Oceanographic Res. Pap. 102, 16–25 (2015).

    CAS  Article  Google Scholar 

  • 43.

    Behrenfeld, M. J., Doney, S. C., Lima, I., Boss, E. S. & Siegel, D. A. Reply to a comment by Stephen M. Chiswell on: Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom- by M. J. Behrenfeld et al. (2013). Glob. Biogeochemical Cycles 27, 1294–1296 (2013).

    ADS  CAS  Article  Google Scholar 

  • 44.

    de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res.: Oceans https://doi.org/10.1029/2004JC002378. C12003 (2004).

  • 45.

    Tagliabue, A. et al. A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean. Biogeosciences 9, 2333–2349 (2012).

    ADS  CAS  Article  Google Scholar 

  • 46.

    Westberry, T., Behrenfeld, M. J., Siegel, D. A. & Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochemical Cycles 22, GB2024 (2008).

    ADS  Google Scholar 

  • 47.

    Ricchiazzi, P., Yang, S., Gautier, C. & Sowle, D. SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Am. Meteorological Soc. 79, 2101–2114 (1998).

    ADS  Article  Google Scholar 

  • 48.

    Banse, K. Rates of phytoplankton cell division in the field and in iron enrichment experiments. Limnol. Oceanogr. 36, 1886–1898 (1991).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles 19, GB1006 (2005).

    ADS  Article  CAS  Google Scholar 

  • 50.

    Geider, R. J. Light and temperature dependence of the carbon to chlorophyll ratio in microalgae an cyanobacteria: Implications for physiology and growth of phytoplankton. N. Phytologist 106, 1–34 (1987).

    CAS  Article  Google Scholar 

  • 51.

    Arteaga, L., Pahlow, M. & Oschlies, A. Global patterns of phytoplankton nutrient and light colimitation inferred from an optimality-based model. Glob. Biogeochem. Cycles 28, 648–661 (2014).

    ADS  CAS  Article  Google Scholar 

  • 52.

    Geider, R. J. & LaRoche, J. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynthesis Res. 39, 275–301 (1994).

    CAS  Article  Google Scholar 

  • 53.

    Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. Part I: Oceanographic Res. Pap. 42, 641–673 (1995).

    ADS  Article  Google Scholar 

  • 54.

    Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the argo program. Prog. Oceanogr. 82, 81–100 (2009).

    ADS  Article  Google Scholar 

  • 55.

    Bushinsky, S. M., Gray, A. R., Johnson, K. S. & Sarmiento, J. L. Oxygen in the Southern Ocean from argo floats: determination of processes driving air-sea fluxes. J. Geophys. Res.: Oceans 122, 8661–8682 (2017).

    ADS  CAS  Article  Google Scholar 

  • 56.

    Arteaga, L. A., Pahlow, M., Bushinsky, S. M. & Sarmiento, J. L. Nutrient controls on export production in the Southern Ocean. Glob. Biogeochem. Cycles https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GB006236 (2019),


  • Source: Ecology - nature.com

    Solve Challenge Finals go virtual for 2020

    Universities should lead the way on climate action, MIT panelists say