in

Sexual reproduction and genetic polymorphism within the cosmopolitan marine diatom Pseudo-nitzschia pungens

  • 1.

    De Queiroz, K. Ernst Mayr and the modern concept of species. Proc. Natl. Acad. Sci. 102, 6600–6607 (2005).

    ADS  PubMed  Google Scholar 

  • 2.

    Hey, J. On the failure of modern species concepts. Trends Ecol. Evol. 21, 447–450 (2006).

    PubMed  Google Scholar 

  • 3.

    3Mayden, R. L. A hierarchy of species concepts: the denouement in the saga of the species problem (1997).

  • 4.

    Coyne, J. & Orr, H. Speciation (Sinauer Associates Google Scholar, Sunderland, MA, 2004).

    Google Scholar 

  • 5.

    Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).

    PubMed  Google Scholar 

  • 6.

    Struck, T. H. et al. Finding evolutionary processes hidden in cryptic species. Trends Ecol. Evol. 33, 153–163 (2018).

    PubMed  Google Scholar 

  • 7.

    Amato, A. et al. Reproductive isolation among sympatric cryptic species in marine diatoms. Protist 158, 193–207 (2007).

    CAS  PubMed  Google Scholar 

  • 8.

    Ellegaard, M., Godhe, A., Härnström, K. & McQuoid, M. The species concept in a marine diatom: LSU rDNA–based phylogenetic differentiation in Skeletonema marinoi/dohrnii (Bacillariophyceae) is not reflected in morphology. Phycologia 47, 156–167 (2008).

    CAS  Google Scholar 

  • 9.

    Knowlton, N. Cryptic and sibling species among the decapod Crustacea. J. Crustac. Biol. 6, 356–363 (1986).

    Google Scholar 

  • 10.

    Knowlton, N. Sibling species in the sea. Annu. Rev. Ecol. Syst. 24, 189–216 (1993).

    Google Scholar 

  • 11.

    Sáez, A. G. & Lozano, E. Body doubles. Nature 433, 111–111 (2005).

    ADS  PubMed  Google Scholar 

  • 12.

    Mayr, E. The Biological Species Concept. Species Concepts and Phylogenetic Theory: A Debate 17–29 (Columbia University Press, New York, 2000).

    Google Scholar 

  • 13.

    Duffy, J. E. et al. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol. Lett. 10, 522–538 (2007).

    PubMed  Google Scholar 

  • 14.

    Burdon, J. & Roelfs, A. The effect of sexual and asexual reproduction on the isozyme structure of populations of Puccinia graminis. Phytopathology 75, 1068–1073 (1985).

    CAS  Google Scholar 

  • 15.

    Goodwin, S. B., Spielman, L., Matuszak, J., Bergeron, S. & Fry, W. Clonal diversity and genetic differentiation of Phytophthora infestans populations in northern and central Mexico. Phytopathology (USA) 82, 955–961 (1992).

    CAS  Google Scholar 

  • 16.

    Xiang, K. et al. Identification of a Tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation. Mol. Biol. Evol. 30, 1889–1898 (2013).

    CAS  PubMed  Google Scholar 

  • 17.

    Ohashi, J., Naka, I. & Tsuchiya, N. The impact of natural selection on an ABCC11 SNP determining earwax type. Mol. Biol. Evol. 28, 849–857 (2010).

    PubMed  Google Scholar 

  • 18.

    Hollister, J. D. et al. Recurrent loss of sex is associated with accumulation of deleterious mutations in Oenothera. Mol. Biol. Evol. 32, 896–905 (2014).

    PubMed  Google Scholar 

  • 19.

    Nowack, E. C. et al. Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. Mol. Biol. Evol. 28, 407–422 (2010).

    PubMed  Google Scholar 

  • 20.

    Nikolaidis, N., Doran, N. & Cosgrove, D. J. Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion. Mol. Biol. Evol. 31, 376–386 (2013).

    PubMed  Google Scholar 

  • 21.

    Scalco, E., Amato, A., Ferrante, M. I. & Montresor, M. The sexual phase of the diatom Pseudo-nitzschia multistriata: cytological and time-lapse cinematography characterization. Protoplasma 253, 1421–1431 (2016).

    CAS  PubMed  Google Scholar 

  • 22.

    Chepurnov, V. A. et al. Sexual reproduction, mating system, chloroplast dynamics and abrupt cell size reduction in Pseudo-nitzschia pungens from the North Sea (Bacillariophyta). Eur. J. Phycol. 40, 379–395 (2005).

    Google Scholar 

  • 23.

    Amato, A., Orsini, L., D’Alelio, D. & Montresor, M. Life cycle, size reduction patterns, and ultrastructure of the pennate planktonic diatom Pseudo-nitzschia delicatissima (Bacillariophyceae). J. Phycol. 41, 542–556 (2005).

    Google Scholar 

  • 24.

    Davidovich, N. A. & Bates, S. S. Sexual reproduction in the pennate diatoms Pseudo-nitzschia multiseries and P. pseudodelicatissima (Bacillariophyceae). J. Phycol. 34, 126–137 (1998).

    Google Scholar 

  • 25.

    Arnold, M. L. Natural hybridization as an evolutionary process. Annu. Rev. Ecol. Syst. 23, 237–261 (1992).

    Google Scholar 

  • 26.

    Arnold, M. L. Natural Hybridization and Evolution (Oxford University Press, Oxford, 1997).

    Google Scholar 

  • 27.

    Grant, V. Plant Speciation, Vol. 563 (Columbia University Press, New York, 1981).

    Google Scholar 

  • 28.

    Stebbins, G. L. The role of hybridization in evolution. Proc. Am. Philos. Soc. 103, 231–251 (1959).

    Google Scholar 

  • 29.

    Montresor, M., Vitale, L., D’Alelio, D. & Ferrante, M. I. Sex in marine planktonic diatoms: insights and challenges. Perspect. Phycol. 3, 61–75 (2016).

    Google Scholar 

  • 30.

    Sarno, D., Zingone, A. & Montresor, M. A massive and simultaneous sex event of two Pseudo-nitzschia species. Deep-Sea Res. Part II-Top. Stud. 57, 248–255 (2010).

    ADS  Google Scholar 

  • 31.

    Holtermann, K. E., Bates, S. S., Trainer, V. L., Odell, A. & VirginiaArmbrust, E. Mass sexual reproduction in the toxigenic diatoms Pseudo-nitzschia australis and P. pungens (Bacillariophyceae) on the Washington coast, USA. J. Phycol. 46, 41–52 (2010).

    CAS  Google Scholar 

  • 32.

    Assmy, P., Henjes, J., Smetacek, V. & Montresor, M. Auxospore formation by the silica-sinking, oceanic diatom Fragilariopsis kerguelensis (Bacillariophyceae). J. Phycol. 42, 1002–1006 (2006).

    Google Scholar 

  • 33.

    Fryxell, G., Garza, S. & Roelke, D. Auxospore formation in an Antarctic clone of Nitzschia subcurvata Hasle. Diatom Res. 6, 235–245 (1991).

    Google Scholar 

  • 34.

    Lande, R. & Shannon, S. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50, 434–437 (1996).

    PubMed  Google Scholar 

  • 35.

    Casteleyn, G. et al. Pseudo-nitzschia pungens (Bacillariophyceae): a cosmopolitan diatom species?. Harmful Algae 7, 241–257 (2008).

    CAS  Google Scholar 

  • 36.

    Casteleyn, G. et al. Limits to gene flow in a cosmopolitan marine planktonic diatom. Proc. Natl. Acad. Sci. 107, 12952–12957 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 37.

    Hasle, G. R. Are most of the domoic acid-producing species of the diatom genus Pseudo-nitzschia cosmopolites?. Harmful Algae 1, 137–146 (2002).

    Google Scholar 

  • 38.

    Lelong, A., Hégaret, H., Soudant, P. & Bates, S. S. Pseudo-nitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfish poisoning: revisiting previous paradigms. Phycologia 51, 168–216 (2012).

    CAS  Google Scholar 

  • 39.

    Trainer, V. L. et al. Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae 14, 271–300 (2012).

    Google Scholar 

  • 40.

    Casteleyn, G. et al. Natural hybrids in the marine diatom Pseudo-nitzschia pungens (Bacillariophyceae): genetic and morphological evidence. Protist 160, 343–354 (2009).

    CAS  PubMed  Google Scholar 

  • 41.

    Churro, C. I. et al. Diversity and abundance of potentially toxic Pseudo-nitzschia peragallo in Aveiro coastal lagoon, Portugal and description of a new variety, P. pungens var. aveirensis var. nov. Diatom Res. 24, 35–62 (2009).

    Google Scholar 

  • 42.

    Kim, J. H., Park, B. S., Kim, J. H., Wang, P. & Han, M. S. Intraspecific diversity and distribution of the cosmopolitan species Pseudo-nitzschia pungens (Bacillariophyceae): morphology, genetics, and ecophysiology of the three clades. J. Phycol. 51, 159–172 (2015).

    ADS  PubMed  Google Scholar 

  • 43.

    Lim, H. C., Lim, P. T., Teng, S. T., Bates, S. S. & Leaw, C. P. Genetic structure of Pseudo-nitzschia pungens (Bacillariophyceae) populations: implications of a global diversification of the diatom. Harmful Algae 37, 142–152 (2014).

    Google Scholar 

  • 44.

    Villac, M. & Fryxell, G. Pseudo-nitzschia pungens var. cingulata var. nov. (Bacillariophyceae) based on field and culture observations. Phycologia 37, 269–274 (1998).

    Google Scholar 

  • 45.

    Bates, S. S., Hiltz, M. F. & Leger, C. Domoic acid toxicity of large new cells of Pseudo-nitzschia multiseries resulting from sexual reproduction. In Proceedings of the Sixth Canadian Workshop on Harmful Marine Algae (eds Martin, J. L. & Haya, K.) 21–26 (Canadian Technical Report of Fisheries and Aquatic Sciences, Ottawa, 1999).

    Google Scholar 

  • 46.

    Amato, A. & Montresor, M. Morphology, phylogeny, and sexual cycle of Pseudo-nitzschia mannii sp. Nov. (Bacillariophyceae): a pseudo-cryptic species within the P. pseudodelicatissima complex. Phycologia 47, 487–497 (2008).

    Google Scholar 

  • 47.

    D’Alelio, D. et al. Internal transcribed spacer polymorphism in Pseudo-nitzschia multistriata (Bacillariophyceae) in the Gulf of Naples: recent divergence or intraspecific hybridization?. Protist 160, 9–20 (2009).

    PubMed  Google Scholar 

  • 48.

    Kim, J. H. et al. Revealing the distinct habitat ranges and hybrid zone of genetic sub-populations within Pseudo-nitzschia pungens (Bacillariophyceae) in the West Pacific area. Harmful Algae 73, 72–83 (2018).

    PubMed  Google Scholar 

  • 49.

    Tamarin, R. Principles of Genetics (McGraw-Hill, New York, 1999).

    Google Scholar 

  • 50.

    Irwin, D. E., Irwin, J. H. & Price, T. D. Microevolution Rate, Pattern, Process 223–243 (Springer, New York, 2001).

    Google Scholar 

  • 51.

    Irwin, D. E. & Irwin, J. H. Circular overlaps: rare demonstrations of speciation. Auk 119, 596–602 (2002).

    Google Scholar 

  • 52.

    Vanormelingen, P., Chepurnov, V. A., Mann, D. G., Cousin, S. & Vyverman, W. Congruence of morphological, reproductive and ITS rDNA sequence data in some Australasian Eunotia bilunaris (Bacillariophyta). Eur. J. Phycol. 42, 61–79 (2007).

    CAS  Google Scholar 

  • 53.

    Vanormelingen, P., Chepurnov, V. A., Mann, D. G., Sabbe, K. & Vyverman, W. Genetic divergence and reproductive barriers among morphologically heterogeneous sympatric clones of Eunotia bilunaris sensu lato (Bacillariophyta). Protist 159, 73–90 (2008).

    CAS  PubMed  Google Scholar 

  • 54.

    Amato, A. & Orsini, L. Rare interspecific breeding in Pseudo-nitzschia (Bacillariophyceae). Phytotaxa 217, 145–154 (2015).

    Google Scholar 

  • 55.

    Coleman, A. W. Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Mol. Phylogenet. Evol. 50, 197–203 (2009).

    CAS  PubMed  Google Scholar 

  • 56.

    Müller, T., Philippi, N., Dandekar, T., Schultz, J. & Wolf, M. Distinguishing species. RNA 13, 1469–1472 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Coleman, A. W. The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist 151, 1–9 (2000).

    CAS  PubMed  Google Scholar 

  • 58.

    Wayne Litaker, R. et al. Recongnizing dinoflagellate species using ITS rDNA sequences. J. Phycol. 43, 344–355 (2007).

    Google Scholar 

  • 59.

    Coleman, A. W. Paramecium aurelia revisited. J. Eukaryot. Microbiol. 52, 68–77 (2005).

    CAS  PubMed  Google Scholar 

  • 60.

    Amato, A. Diatom reproductive biology: living in a crystal cage. Int. J. Plant Reprod. Biol. 2, 1–10 (2010).

    ADS  Google Scholar 

  • 61.

    Charlesworth, B. The evolution of sex and recombination. Trends Ecol. Evol. 4, 264–267 (1989).

    CAS  PubMed  Google Scholar 

  • 62.

    Brumfield, R., Beerli, P., Nickerson, D. & Edwards, S. Single nucleotide polymorphisms (SNPs) as markers in phylogeography. Trends Ecol. Evol. 18, 249–256 (2003).

    Google Scholar 

  • 63.

    Vignal, A., Milan, D., SanCristobal, M. & Eggen, A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Select. Evol. 34, 275–306 (2002).

    CAS  Google Scholar 

  • 64.

    Barreiro, L. B., Laval, G., Quach, H., Patin, E. & Quintana-Murci, L. Natural selection has driven population differentiation in modern humans. Nat. Genet. 40, 340–345 (2008).

    CAS  PubMed  Google Scholar 

  • 65.

    Griffiths, A. J. An Introduction to Genetic Analysis (Macmillan, New York, 2005).

    Google Scholar 

  • 66.

    Møller, A. P. Developmental stability and fitness: a review. Am. Nat. 149, 916–932 (1997).

    PubMed  Google Scholar 

  • 67.

    Barton, N. The role of hybridization in evolution. Mol. Ecol. 10, 551–568 (2001).

    CAS  PubMed  Google Scholar 

  • 68.

    Kaczmarska, I. et al. Proposals for a terminology for diatom sexual reproduction, auxospores and resting stages. Diatom Res. 28, 263–294 (2013).

    Google Scholar 

  • 69.

    D’Alelio, D., d’Alcala, M. R., Dubroca, L., Zingone, A. & Montresor, M. The time for sex: a biennial life cycle in a marine planktonic diatom. Limnol. Oceanogr. 55, 106–114 (2010).

    ADS  Google Scholar 

  • 70.

    Reusch, T. B. & Boyd, P. W. Experimental evolution meets marine phytoplankton. Evolution 67, 1849–1859 (2013).

    PubMed  Google Scholar 

  • 71.

    Kaltz, O., Bell, G. & Morgan, M. The ecology and genetics of fitness in Chlamydomonas. XII. Repeated sexual episodes increase rates of adaptation to novel environments. Evolution 56, 1743–1753 (2002).

    PubMed  Google Scholar 

  • 72.

    D’Alelio, D. & Ruggiero, M. V. Interspecific plastidial recombination in the diatom genus Pseudo-nitzschia. J. Phycol. 51, 1024–1028 (2015).

    CAS  PubMed  Google Scholar 

  • 73.

    Evans, K. M. & Hayes, P. K. Microsatellite markers for the cosmopolitan marine diatom Pseudonitzschia pungens. Mol. Ecol. Notes 4, 125–126 (2004).

    CAS  Google Scholar 

  • 74.

    Saraceni, C. & Ruggiu, D. Techniques for sampling water and phytoplankton. A manual on methods for measuring primary production in aquatic environments. IBP Handb. 12, 5–7 (1974).

    Google Scholar 

  • 75.

    Hendy, N. The permanganate method for cleaning freshly gathered diatom. Microscopy 32, 423–426 (1974).

    Google Scholar 

  • 76.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 77.

    Mann, D. G. Sieves and flaps: siliceous minutiae in the pores of raphid diatoms. In Proceedings of the 6th Symposium on Recent and Fossil Diatoms. 279–300 (O. Koeltz Koenigstein, 1981).

  • 78.

    Round, F. E., Crawford, R. M. & Mann, D. G. Diatoms: biology and morphology of the genera (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  • 79.

    Wolf, M., Achtziger, M., Schultz, J., Dandekar, T. & Müller, T. Homology modeling revealed more than 20,000 rRNA internal transcribed spacer 2 (ITS2) secondary structures. RNA 11, 1616–1623 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 80.

    Darty, K., Denise, A. & Ponty, Y. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25, 1974 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 81.

    Keller, A. et al. 5.8 S-28S rRNA interaction and HMM-based ITS2 annotation. Gene 430, 50–57 (2009).

    CAS  PubMed  Google Scholar 

  • 82.

    Seibel, P. N., Müller, T., Dandekar, T., Schultz, J. & Wolf, M. 4SALE–a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinform 7, 498 (2006).

    Google Scholar 

  • 83.

    Ki, J.-S., Jang, G. Y. & Han, M.-S. Integrated method for single-cell DNA extraction, PCR amplification, and sequencing of ribosomal DNA from harmful dinoflagellates Cochlodinium polykrikoides and Alexandrium catenella. Mar. biotechnol. 6, 587–593 (2004).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Observed changes in dry-season water availability attributed to human-induced climate change

    Experimental study on the movement of heavy metal Zn in paddy soil under different irrigation quota of reclaimed water