in

Shifts in the developmental rate of spadefoot toad larvae cause decreased complexity of post-metamorphic pigmentation patterns

  • 1.

    Protas, M. E. & Patel, N. H. Evolution of coloration patterns. Annu. Rev. Cell. Dev. Biol. 24, 425–446 (2008).

    CAS  Article  Google Scholar 

  • 2.

    Robertson, J. M. & Greene, H. W. Bright colour patterns as social signals in nocturnal frogs. Biol. J. Linn. Soc. 121, 849–857 (2017).

    Article  Google Scholar 

  • 3.

    Hill, G. E. et al. (eds) Bird coloration: mechanisms and measurements Vol. 1 (Harvard University Press, Cambridge, 2006).

    Google Scholar 

  • 4.

    Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds—a role for parasites. Science 218, 384–387 (1982).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Lindström, K. & Lundström, J. Male greenfinches (Carduelis chloris) with brighter ornaments have higher virus infection clearance rate. Behav. Ecol. Sociobiol. 48, 44–51 (2000).

    Article  Google Scholar 

  • 6.

    Pérez-Rodríguez, L., Jovani, R. & Stevens, M. Shape matters: animal colour patterns as signals of individual quality. Proc. R. Soc. B. 284, 20162446–20162510 (2017).

    Article  Google Scholar 

  • 7.

    Stevens, M., Cuthill, I. C., Windsor, A. M. & Walker, H. J. Disruptive contrast in animal camouflage. Proc. R. Soc. B 273, 2433–2438 (2006).

    Article  Google Scholar 

  • 8.

    Stevens, M., Winney, I. S., Cantor, A. & Graham, J. Outline and surface disruption in animal camouflage. Proc. R. Soc. B 276, 781–786 (2009).

    Article  Google Scholar 

  • 9.

    Allen, W. L., Cuthill, I. C., Scott-Samuel, N. E. & Baddeley, R. Why the leopard got its spots: relating pattern development to ecology in felids. Proc. R. Soc. B 278, 1373–1380 (2010).

    Article  Google Scholar 

  • 10.

    Kelley, J. L., Fitzpatrick, J. L. & Merilaita, S. Spots and stripes: ecology and colour pattern evolution in butterflyfishes. Proc. R. Soc. B 280, 20122730–20122739 (2013).

    Article  PubMed  Google Scholar 

  • 11.

    Kondo, S. & Shirota, H. Theoretical analysis of mechanisms that generate the pigmentation pattern of animals. Semin. Cell Dev. Biol. 20, 82–89 (2009).

    Article  Google Scholar 

  • 12.

    Theis, A., Salzburger, W. & Egger, B. The function of anal fin egg-spots in the cichlid fish Astatotilapia burtoni. PLoS ONE 7, e29878 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Palmer, M. E., Calvé, M. R. & Adamo, S. A. Response of female cuttlefish Sepia officinalis (Cephalopoda) to mirrors and conspecifics: evidence for signaling in female cuttlefish. Anim. Cogn. 9, 151–155 (2006).

    CAS  Article  Google Scholar 

  • 14.

    Gluckman, T. L. & Cardoso, G. C. The dual function of barred plumage in birds; camouflage and communication. J. Evol. Biol. 23, 2501–2506 (2010).

    CAS  Article  Google Scholar 

  • 15.

    Rowland, H. M. et al. Countershading enhances cryptic protection: an experiment with wild birds and artificial prey. Anim. Behav. 74, 1249–1258 (2007).

    Article  Google Scholar 

  • 16.

    Singh, A. P. & Nüsslein-Volhard, C. Zebrafish Stripes as a model for vertebrate review colour pattern formation. Curr. Biol. 25, R81–R92 (2015).

    CAS  Article  Google Scholar 

  • 17.

    Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding Attack. Oxford, UK: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198528609.003.0012 (2004).

  • 18.

    Manriquez, K. C., Pardo, L. M., Wells, R. J. D. & Palma, A. T. Crypsis in Paraxanthus barbiger (Decapoda : Brachyura): Mechanisms against visual predators. J. Crustac. Biol. 28, 473–479 (2008).

    Article  Google Scholar 

  • 19.

    Nishikawa, H. et al. Molecular basis of wing coloration in a batesian mimic butterfly, Papilio polytes. Sci. Rep. 3, 3184 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 20.

    Stevens, M. & Ruxton, G. D. The key role of behaviour in animal camouflage. Biol. Rev. 94, 116–134 (2019).

    Article  Google Scholar 

  • 21.

    Wittkopp, P. J., Carroll, S. B. & Kopp, A. Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet. 19, 495–504 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Hiyama, A., Taira, W. & Otaki, J. M. Color-pattern evolution in response to environmental stress in butterflies. Front. Genet. 3, 15 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Pérez-Rodríguez, L., Jovani, R. & Mougeot, F. Fractal geometry of a complex plumage trait reveals bird’s quality. Proc. R. Soc. B. 280, 20122783–20122786 (2013).

    Article  PubMed  Google Scholar 

  • 24.

    Jiguet, F. & Bretagnolle, V. Sexy males and choosy females on exploded leks: correlates of male attractiveness in the Little Bustard. Behav. Proc. 103, 246–255 (2014).

    Article  Google Scholar 

  • 25.

    Tibbetts, E. A. & Curtis, T. R. Rearing conditions influence quality signals but not individual identity signals in Polistes wasps. Behav. Ecol. 18, 602–607 (2007).

    Article  Google Scholar 

  • 26.

    Park, C. J., Kang, H. S. & Gye, M. C. Effects of nonylphenol on early embryonic development, pigmentation and 3,5,3’-triiodothyronine-induced metamorphosis in Bombina orientalis (Amphibia: Anura). Chemosphere 81, 1292–1300 (2010).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 27.

    Rudh, A. & Qvarnström, A. Adaptive colouration in amphibians. Semin. Cell Dev. Biol. 24, 553–561 (2013).

    Article  PubMed  Google Scholar 

  • 28.

    Rabbani, M., Zacharczenko, B. & Green, D. M. Color pattern variation in a cryptic amphibian, Anaxyrus fowleri. J. Herpetol. 49, 649–654 (2015).

    Article  Google Scholar 

  • 29.

    Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700 (2012).

    Article  PubMed  Google Scholar 

  • 30.

    Wells, K. D. The Ecology and Behavior of Amphibians (The University of Chicago Press, USA, 2007).

    Google Scholar 

  • 31.

    Haas, A. Phylogeny of frogs as inferred from primarily larval characters (Amphibia: Anura). Cladistics 19, 23–89 (2003).

    Google Scholar 

  • 32.

    Wollenberg Valero, K. C. et al. Transcriptomic and macroevolutionary evidence for phenotypic uncoupling between frog life history phases. Nat. Commun. 8, 1–9 (2017).

    Article  CAS  Google Scholar 

  • 33.

    Van Allen, B. G., Briggs, V. S., McCoy, M. W. & Vonesh, J. R. Carry-over effects of the larval environment on post-metamorphic performance in two hylid frogs. Oecologia 164, 891–898 (2010).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Touchon, J. C., McCoy, M. W., Vonesh, J. R. & Warkentin, K. M. Effects of plastic hatching timing carry over through metamorphosis in red-eyed treefrogs. Ecology 94, 850–860 (2013).

    Article  Google Scholar 

  • 35.

    Gomez-Mestre, I. et al. The shape of things to come: linking developmental plasticity to post-metamorphic morphology in anurans. J. Evol. Biol. 23, 1364–1373 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Thibaudeau, G. & Altig, R. Coloration of Anuran Tadpoles (Amphibia): development, dynamics, function, and hypotheses. ISRN Zoology 1–16 (2012).

  • 37.

    Parichy, D. M. & Turner, J. M. Zebrafish puma mutant decouples pigment pattern and somatic metamorphosis. Dev. Biol. 256, 242–257 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    Touchon, J. C., McCoy, M. W., Landberg, T., Vonesh, J. R. & Warkentin, K. M. Putting μ/g in a new light: plasticity in life history switch points reflects fine-scale adaptive responses. Ecology 96, 2192–2202 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Gomez-Mestre, I., Kulkarni, S. & Buchholz, D. R. Mechanisms and consequences of developmental acceleration in tadpoles responding to pond drying. PLoS ONE 8, e84266 (2013).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Gomez-Mestre, I. & Buchholz, D. R. Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity. PNAS 103, 50 (2006).

    Article  CAS  Google Scholar 

  • 41.

    Gervasi, S. S. & Foufopoulos, J. Costs of plasticity: responses to desiccation decrease post-metamorphic immune function in a pond-breeding amphibian. Funct. Ecol. 22, 100–108 (2008).

    Google Scholar 

  • 42.

    Schloerke, B. GGally: Extension to ‘ggplot2’. R package version 2.0.0. https://CRAN.R-project.org/package=GGally (2020).

  • 43.

    Covarrubias-Pazaran, G. Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11, e0156744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits Vol. 1, 535–557 (Sinauer, Sunderland, MA, 1998).

    Google Scholar 

  • 45.

    Burraco, P., Valdés, A. E., Johansson, F. & Gomez-Mestre, I. Physiological mechanisms of adaptive developmental plasticity in Rana temporaria island populations. BMC Evol. Biol. 17, 164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Kulkarni, S. S., Denver, R. J., Gomez-Mestre, I. & Buchholz, D. R. Genetic accommodation via modified endocrine signalling explains phenotypic divergence among spadefoot toad species. Nat. Commun. 8, 993 (2017).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Bagnara, J. T. & Fernandez, P. J. Hormonal influences on the development of amphibian pigmentation patterns. Zool. Sci. 10, 733–748 (1993).

    CAS  Google Scholar 

  • 48.

    Frieden, E. & Just, J. J. Hormonal responses in amphibian metamorphosis. Biochem. Actions Hormon. 1, 1–52 (2012).

    Google Scholar 

  • 49.

    Noriega, N. C. & Hayes, T. B. DDT congener effects on secondary sex coloration in the reed frog Hyperolius argus: a partial evaluation of the Hyperolius argus endocrine screen. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 126, 231–237 (2000).

    CAS  Article  Google Scholar 

  • 50.

    Hayes, T. B. et al. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc. Natl. Acad. Sci. 99, 5476–5480 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 51.

    Bagnara, J. T. & Matsumoto, J. Comparative anatomy and physiology of pigment cells in nonmammalian tissues. In The Pigmentary System: Physiology and Pathophysiology (2nd edition), (Nordlund, J. J. et al. eds.), 11–59 (Oxford Univ. Press, UK, 2006).

  • 52.

    Schanz, T. S., Bensch, S., Grahn, M., Hasselquist, D. & Wittzell, H. Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. B 266, 1–12 (1999).

    Article  Google Scholar 

  • 53.

    Cabrera-Guzmán, E., Díaz-Paniagua, C. & Gomez-Mestre, I. Differential effect of natural and pigment-supplemented diets on larval development and phenotype of anurans. J. Zool. https://doi.org/10.1111/jzo.12827 (2020).

    Article  Google Scholar 

  • 54.

    Isaksson, C., Örnborg, J., Stephensen, E. & Andersson, S. Plasma glutathione and carotenoid coloration as potential biomarkers of environmental stress in great tits. EcoHealth 2, 138–146 (2005).

    Article  Google Scholar 

  • 55.

    Summers, K. & Clough, M. E. The Evolution of coloration and toxicity in the poison frog family (Dendrobatidae). PNAS 98, 6227–6232 (2001).

    ADS  CAS  Article  Google Scholar 

  • 56.

    Vences, M. et al. Convergent evolution of aposematic coloration in Neotropical poison frogs: a molecular phylogenetic perspective. Org. Divers. Evol. 3, 215–226 (2003).

    Article  Google Scholar 

  • 57.

    Sköld, H. N., Aspengren, S. & Wallin, M. Rapid color change in fish and amphibians—function, regulation, and emerging applications. Pigment Cell Melanoma Res. 26, 29–38 (2012).

    Article  Google Scholar 

  • 58.

    Gallant, N. & Teather, K. Differences in size, pigmentation, and fluctuating asymmetry in stressed and nonstressed northern leopard frogs (Rana pipiens). Ecoscience 8, 430–436 (2001).

    Article  Google Scholar 

  • 59.

    Garcia, T. S. & Sih, A. Color change and color-dependent behavior is response to predation risk in the salamander sister species Ambystoma barbouri and Ambystoma texanum. Oecologia 137, 131–139 (2003).

    ADS  Article  Google Scholar 

  • 60.

    Polo-Cavia, N. & Gomez-Mestre, I. Pigmentation plasticity enhances crypsis in larval newts: associated metabolic cost and background choice behaviour. Sci. Rep. 7, 39739 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Blaustein, A. R. & Belden, L. K. Amphibian defenses against ultraviolet-B radiation. Evol. Dev. 5, 89–97 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 62.

    Summers, K., Symula, R., Clough, M. & Cronin, T. Visual mate choice in poison frogs. Proc. R. Soc. Lond. B. 266, 2141–2145 (1999).

    CAS  Article  Google Scholar 

  • 63.

    Wollenberg, K. C. & Measey, G. J. Why colour in subterranean vertebrates? Exploring the evolution of colour patterns in caecilian amphibians. J. Evol. Biol. 22, 1046–1056 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 64.

    Stevens, M. & Merilaita, S. Animal Camouflage: Mechanisms and Function (eds. Stevens, M. & Merilaita, S.) (Cambridge Univ. Press, UK, 2011).

  • 65.

    Spicer, J. I. & Burggren, W. W. Development of physiological regulatory systems: altering the timing of crucial events. Zoology 106, 91–99 (2003).

    Article  PubMed  Google Scholar 

  • 66.

    Rundle, S. D. & Spicer, J. I. Heterokairy: a significant form of developmental plasticity?. Biol. Lett. 12, 20160509 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 67.

    Kulkarni, S. S., Gomez-Mestre, I., Moskalik, C. L., Storz, B. L. & Buchholz, D. R. Evolutionary reduction of developmental plasticity in desert spadefoot toads. J. Evol. Biol. 24, 2445–2455 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 68.

    Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).

    Google Scholar 

  • 69.

    Tuceryan, M. & Jain, A. K. Chapter 2.1 Texture Analysis, The Handbook of Pattern Recognition and Computer Vision (2nd edition), (eds. Chen, C. H. et al.), 207–248 (World Scientific Publishing Co., Singapore, 1998).

  • 70.

    Di Cataldo, S. & Ficarra, E. Mining textural knowledge in biological images: applications, methods, and trends. Comput. Struct. Biotech. 15, 56–67 (2017).

    Article  CAS  Google Scholar 

  • 71.

    Haralick, R. M., Shanmugam, K., & Dinstein, I. Textural features for image classification. IEEE T. SYST. MAN. CY. B. SMC-3, 610–621 (1973).

  • 72.

    Haralick, R. M. Statistical and structural approaches to texture. Proc. IEEE 67, 786–804 (1979).

    Article  Google Scholar 

  • 73.

    Conners, R. W., Trivedi, M. M. & Harlow, C. A. Segmentation of a high-resolution urban scene using texture operators. Comput. Gr. Image Process. 25, 273–310 (1984).

    Article  Google Scholar 

  • 74.

    Albregtsen, F. Statistical texture measures computed from gray level cooccurrence matrices. Image processing laboratory, Department of Informatics, University of Oslo, Norway (2008).

  • 75.

    Cabrera, J. Texture analyzer. https://rsb.info.nih.gov/ij/plugins/texture.html (Accessed December, 2019) (2005).

  • 76.

    Sarkar, N. & Chaudhuri, B. B. An efficient differential box-counting approach to compute fractal dimension of image. IEEE T. SYST. MAN CY B. 24, 115–120 (1994).

    Article  Google Scholar 

  • 77.

    Karperien, A. FracLac for ImageJ, https://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm (accessed December, 2019) (1999–2013).

  • 78.

    Mandelbrot, B. B. The Fractal Geometry of Nature (W. H. Freeman and Company, USA, 1982).

    Google Scholar 

  • 79.

    Smith, T. G. Jr., Lange, G. D. & Marks, W. B. Fractal methods and results in cellular morphology—dimensions, lacunarity, and multifractals. J. Neurosci. Methods 69, 123–136 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  • 80.

    Lopes, R. & Betrouni, N. Fractal and multifractal analysis: a review. Med. Image Anal. 13, 634–649 (2009).

    CAS  Article  Google Scholar 

  • 81.

    Tolle, C. R., McJunkin, T. R., Rohrbaugh, D. T. & LaViolette, R. A. Lacunarity definition for ramified data sets based on optimal cover. Phys. D 179, 129–152 (2003).

    MathSciNet  MATH  Article  Google Scholar 

  • 82.

    Peterson, R. A. & Cavanaugh, J. E. Ordered quantile normalization: a semiparametric transformation built for the cross-validation era. J. Appl. Stat. 0, 1–16 (2019).

  • 83.

    Buerkner, P. C. brms: an R package for Bayesian multi-level models using Stan. J. Stat. Softw. 80, 1–28 (2016).

    Google Scholar 


  • Source: Ecology - nature.com

    Power-free system harnesses evaporation to keep items cool

    Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed