in

Shorebirds wintering in Southeast Asia demonstrate trans-Himalayan flights

  • 1.

    Newton, I. The Migration Ecology of Birds (Academic Press, Cambridge, 2008).

    Google Scholar 

  • 2.

    Alerstam, T. Bird Migration (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  • 3.

    Alerstam, T. Detours in bird migration. J. Theor. Biol. 209, 319–331 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: Evolution and determinants. Oikos 103, 247–260 (2003).

    Article  Google Scholar 

  • 5.

    Alves, J. A., Dias, M. P., Méndez, V., Katrínardóttir, B. & Gunnarsson, T. Very rapid long-distance sea crossing by a migratory bird. Sci. Rep. 6, 38154 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Schmaljohann, H., Liechti, F. & Bruderer, B. Songbird migration across the Sahara: The non-stop hypothesis rejected!. Proc. R. Soc. B 274, 735–739 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Gill, R. E. Jr. et al. Extreme endurance flights by landbirds crossing the Pacific Ocean: Ecological corridor rather than barrier?. Proc. R. Soc. B. 276, 447–457 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Léandri-Breton, D. J., Lamarre, J. F. & Bêty, J. Seasonal variation in migration strategies used to cross ecological barriers in a nearctic migrant wintering in Africa. J. Avian Biol. 50, e02101 (2019).

    Article  Google Scholar 

  • 9.

    Donald, C. H. Bird migration across Himalayas. J. Bombay Nat. Hist. Soc. 51, 269–271 (1953).

    Google Scholar 

  • 10.

    Kinnear, N. B. On the birds collected by Mr. A.F.R. Wollaston during the first Mount Everest Expedition. Ibis 64, 495–526 (1922).

    Article  Google Scholar 

  • 11.

    Ali, S. & Ripley, S. D. Compact Handbook of the Birds of India and Pakistan Together with those of Bangladesh, Nepal, Bhutan and Sri Lanka. 2nd edn. (Oxford University Press, Oxford, 1987)

  • 12.

    Balachandran, S., Katti, T. & Manakadan, R. Indian Bird Migration Atlas (Bombay Natural History Society & Oxford University Press, Oxford, 2018).

    Google Scholar 

  • 13.

    Prins, H. H. T. & Namgail, T. Bird Migration Across the Himalayas: Wetland Functioning amidst Mountains and Glaciers (Cambridge University Press, Cambridge, 2017).

    Google Scholar 

  • 14.

    Kanai, Y., Minton, J. & Nagendran, M. Migration of Demoiselle Cranes in Asia based on satellite tracking and field work. Glob. Environ. Res. 4, 143–153 (2000).

    Google Scholar 

  • 15.

    Parr, N. et al. High altitude flights by Ruddy Shelduck Tadorna ferruginea during trans-Himalayan migrations. J. Avian Biol. 48, 1310–1315 (2017).

    Article  Google Scholar 

  • 16.

    Namgail, T. et al. Himalayan Thoroughfare: Migratory Routes of Ducks over the Rooftop of the World. In Bird Migration Across the Himalayas: Wetland Functioning amidst Mountains and Glaciers (eds. Prins, H. H. T. & Namgail, T.) 30–44 (Cambridge University Press, Cambridge, 2017).

  • 17.

    Hawkes, L. A. et al. The trans-Himalayan flights of Bar-headed Geese (Anser indicus). Proc. Natl. Acad. Sci. U. S. A. 108, 9516–9518 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Hawkes, L. A. et al. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus. Proc. R. Soc. B 280, 20122114 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Veen, J. et al. An Atlas of Movements of Southwest Siberian Waterbirds (Wetlands International, Wageningen, 2005).

    Google Scholar 

  • 20.

    Pavlov, D. S. Migrations of Birds of Eastern Europe and Northern Asia Gruiformes and Charadriiformes (in Russian). (Academy of Sciences of the USSR, 1985).

  • 21.

    McClure, H. E. Migration and Survival of the Birds of Asia. (US Army Medical Component SEATO Medical Project, 1974).

  • 22.

    Delany, D., Williams, C., Sulston, C., Norton, J. & Garbutt, D. Wader migration across the Himalayas. In Bird Migration Across the Himalayas: Wetland Functioning Amidst Mountains and Glaciers (eds. Prins, H. H. T. & Namgail, T.) 82–97 (Cambridge University Press, Cambridge, 2017).

  • 23.

    Bamford, M., Watkins, D., Bancroft, W., Tischler, G. & Wahl, J. Migratory Shorebirds of the East Asian—Australasian Flyway: Population Estimates and Internationally Important Sites. (Wetlands International, Oceania, 2008).

  • 24.

    Cao, W. H. et al. Tracking the migration of Whimbrels along the East Asian-Australasian Flyway (in Chinese). Chin. J. Zool. 54, 775–783. https://doi.org/10.13859/j.cjz.201906000 (2019).

    Article  Google Scholar 

  • 25.

    Higgins, P. J. & Davies, S. J. J. F. Handbook of Australian, New Zealand and Antarctic Birds. Volumes 3: Snipe to Pigeons. (Oxford University Press, Oxford, 1996).

  • 26.

    Gan, J., Tan, M. & Li, D. Migratory Birds of Sungei Buloh Wetland Reserve. 2nd edn. (Singapore National Parks Board, Singapore, 2012).

  • 27.

    Zhang, F. Y. & Yang, R. L. China Bird Migration Research (in Chinese). (Beijing Forestry Press, Beijing, 1997).

  • 28.

    Wells, D. R. The Birds of Thai-Malay Peninsula, Volume 1: Non Passerines. (Academic Press, Cambridge, 1999).

  • 29.

    Yatim, S. H. Short notes on band recovery of waders in 1991/1992. J. Wildlife Parks 11, 58–59 (1991).

    Google Scholar 

  • 30.

    Chia, A. A. ‘Ringing’ endorsement for Singapore migrant’s flight of wonder. Nat. Watch. 21, 17 (2013).

    Google Scholar 

  • 31.

    Standen, R. & Londo, I. Sumatran-flagged Common Redshank seen on the breeding grounds. Tattler 37, 7–8 (2015).

    Google Scholar 

  • 32.

    Bellio, M. & Kaluthota, C. Australian Curlew Sandpiper on passage through Sri Lanka. Wader Study 110, 66 (2006).

    Google Scholar 

  • 33.

    Tiwari, J. K. An Australian ringed bird seen in Kutch, India. Tattler 31, 19 (2013).

    Google Scholar 

  • 34.

    Zöckler, C., Moses, S. & Lwin, S. T. The importance of the Myeik mangroves and mudflats, Tanintharyi, Myanmar for migratory waders and other waterbirds. Wader Study 126, 129–141 (2019).

    Article  Google Scholar 

  • 35.

    Ratanakorn, P. et al. Satellite tracking on the flyways of Brown-headed Gulls and their potential role in the spread of highly pathogenic avian influenza H5N1 virus. PLoS ONE 7, e49939 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Hayman, P., Marchant, J. & Prater, A. J. Shorebirds. (Croom Helm, 1986).

  • 37.

    Summers, R. W., Underhill, L. G. & Prys-Jones, R. P. Why do young waders in southern Africa delay their first return migration to the breeding grounds?. Ardea 83, 351–357 (1995).

    Google Scholar 

  • 38.

    Battley, P. F. et al. Interacting roles of breeding geography and early-life settlement in godwit migration timing. Front. Ecol. Evol. 8, 52 (2020).

    Article  Google Scholar 

  • 39.

    Kuang, F. et al. Seasonal and population differences in migration of Whimbrels in the East Asian–Australasian Flyway. Avian Res. 11, 24 (2020).

    Article  Google Scholar 

  • 40.

    Dolnik, V. R. Bird migration across arid and mountainous regions of Middle Asia and Kazakhstan. In Bird Migration (ed. Gwinner E.) 368–386 (Springer, New York, 1990).

  • 41.

    Senner, N. R. et al. High-altitude shorebird migration in the absence of topographical barriers: Avoiding high air temperatures and searching for profitable winds. Proc. R. Soc. B. 285, 20180569 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Alerstam, T. et al. A polar system of intercontinental bird migration. Proc. Biol. Sci. 274, 2523–2530 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Duijns, S. et al. Long-distance migratory shorebirds travel faster towards their breeding grounds, but fly faster post breeding. Sci. Rep. 9, 9420 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 44.

    Lague, S. L. et al. Divergent respiratory and cardiovascular responses to hypoxia in bar-headed geese and Andean birds. J. Exp. Biol. 220, 4186–4194 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Parr, N., Wilkes, M. & Hawkes, L. A. Natural climbers: Insights from avian physiology at high altitude. High Alt. Med. Biol. 20, 427–437 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Scott, G. R. Elevated performance: The unique physiology of birds that fly at high altitudes. J. Exp. Biol. 214, 2455–2462 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Landys-Ciannelli, M. M., Jukema, J. & Piersma, T. Blood parameter changes during stopover in a long-distance migratory shorebird, the bar-tailed godwit Limosa lapponica taymyrensis. J. Avian Biol. 33, 451–455 (2002).

    Article  Google Scholar 

  • 48.

    Guglielmo, C. G., Haunerland, N. H., Hochachka, P. W. & Williams, T. D. Seasonal dynamics of flight muscle fatty acid binding protein and catabolic enzymes in a migratory shorebird. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, 1405–1413 (2002).

    Article  Google Scholar 

  • 49.

    Piersma, T., Gudmundsson, G. A. & Lilliendahl, K. Rapid changes in the size of different functional organ and muscle groups during refueling in a long-distance migrating shorebird. Physiol. Biochem. Zool. 72, 405–415 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Lu, X. The Birds of Qinghai-Tibet Plateau of China (in Chinese). (Hunan Science and Technology Press, Hunan, 2018).

  • 51.

    Liu, N. F., Bao, X. K. & Liao, J. C. Bird Classification and Distribution on Qinghai-Tibet Plateau (in Chinese). (Beijing Science Press, Beijing, 2013).

  • 52.

    Clark, N. A. et al. The use of light-level geolocators to study wader movements. Wader Study 117, 173–178 (2010).

    Google Scholar 

  • 53.

    Minton, C. et al. Geolocator studies on Ruddy Turnstones Arenaria interpres and Greater Sandplovers Charadrius leschenaultii in the East Asian-Australasia Flyway reveal widely different migration strategies. Wader Study 118, 87–96 (2011).

    Google Scholar 

  • 54.

    Buxton, N. Redshanks in the Western Isles of Scotland. Ringing Migr. 9, 146–152 (1988).

    Article  Google Scholar 

  • 55.

    Burton, N. H. K. Winter site-fidelity and survival of Redshank Tringa totanus at Cardiff, south Wales. Bird Study 47, 102–112 (2000).

    Article  Google Scholar 

  • 56.

    Lisovski, S. et al. Light-level geolocator analyses: A user’s guide. J. Anim. Ecol. 89, 221–236. https://doi.org/10.1111/1365-2656.13036 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Lisovski, S., Sumner, M. & Wotherspoon, S. TwGeos: Basic data processing for light-level geolocation archival tags. GitHub repository. https://github.com/slisovski/TwGeos. (2016).

  • 58.

    Lisovski, S. Define movements in light-level geolocator data. GitHub repository: https://github.com/slisovski/invMovement. (2019).

  • 59.

    Wotherspoon, S.J., Sumner, D.A., Lisovski, S. R Package SGAT: Solar/Satellite Geolocation for Animal Tracking. GitHub repository. https://github.com/SWotherspoon/SGAT. (2013).

  • 60.

    Battley, P. F. & Conklin, J. R. Geolocator wetness data accurately detect periods of migratory flight in two species of shorebird. Wader Study 124, 112–119 (2017).

    Article  Google Scholar 

  • 61.

    Rappole, J. H. & Tipton, A. R. New harness design for attachment of radio transmitters to small passerines. J. Field Ornithol. 62, 335–337 (1991).

    Google Scholar 

  • 62.

    Phillips, R. A., Xavier, J. C. & Croxall, J. P. Effects of satellite transmitters on Albatrosses and Petrels. Auk 120(4), 1082–1090 (2003).

    Article  Google Scholar 

  • 63.

    Davidson, N. C. & Evans, P. R. Prebreeding accumulation of fat and muscle protein by Arctic-breeding shorebirds. Proc. Int. Ornithol. Congr. 19, 342–352 (1988).

    Google Scholar 

  • 64.

    Kranstauber, B., Smolla, M. & Scharf, A. K. Move: Visualizing and Analyzing Animal Track Data. R package version 3.3.0. https://CRAN.R-project.org/package=move. (2020).

  • 65.

    Dodge, S. et al. The environmental-data automated track annotation (Env-DATA) system: Linking animal tracks with environmental data. Mov. Ecol. 1(1), 3 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Safi, K. et al. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight. Mov. Ecol. 1(1), 4 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Amante, C. & Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. (2009). https://doi.org/10.7289/V5C8276M

  • 68.

    BirdLife International and Handbook of the Birds of the World. Bird species distribution maps of the world. Version 2018.1. http://datazone.birdlife.org/species/requestdis (2018).

  • 69.

    R Core Team. R: A Language of Environment and Statistical Computing, Vienna Austria. https://www.R-project.org (2019).


  • Source: Ecology - nature.com

    A core microbiota dominates a rich microbial diversity in the bovine udder and may indicate presence of dysbiosis

    Case studies show climate variation linked to rise and fall of medieval nomadic empires