in

Small-scale alpine topography at low latitudes and high altitudes: refuge areas of the genus Chrysanthemum and its allies

  • 1.

    Hirakawa, H. et al. De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis. DNA Res. 26, 195–203 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Stevenson, T. Chrysanthemums. Nature 90, 248 (1912).

    Google Scholar 

  • 3.

    Ministry of Agriculture and Fisheries UK. Control of the Chrysanthemum midge. Nature 144, 280 (1939).

  • 4.

    Cockshull, K. E. & Hughes, A. P. Distribution of dry matter to flowers in Chrysanthemum morifolium. Nature 215, 780–781 (1976).

    Article  Google Scholar 

  • 5.

    Courtney-Gutterson, N. et al. Modification of flower color in florist’s Chrysanthemum: production of a white–flowering variety through molecular genetics. Nat. Biotechnol. 12, 268–271 (1994).

    CAS  Article  Google Scholar 

  • 6.

    Gamalero, E. Effects of Pseudomonas putida S1Pf1Rif against Chrysanthemum yellows phytoplasma infection. Phytopathology 100, 805–813 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Wei, Q. et al. Control of chrysanthemum flowering through integration with an aging pathway. Nat. Commun. 8, 829 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 8.

    Yang, L., Wen, X., Fu, J. & Dai, S. ClCRY2 facilitates floral transition in Chrysanthemum lavandulifolium by affecting the transcription of circadian clock-related genes under short-day photoperiods. Hortic. Res. 5, 58 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 9.

    Su, J. et al. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Hortic. Res. 6, 109 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 10.

    Kubitzki, K. The families and genera of vascular plants, Vol. VIII Flowering Plants・Eudicots (eds Kadereit, J. W. & Jeffrey, C.) Compositae (eds. Anderberg, A. A. et al.) (Springer-Verlag Berlin Heidelberg, 2007).

  • 11.

    Poljakov, P. P. Duo genere novae fam. Compositae. Not. Syst. Herb. Inst. Bot. Akad. Sci. URSS 17, 418–431 (1955).

    Google Scholar 

  • 12.

    Muldashev, A. A. A new genus Phaeostigma (Asteraceae) from the East Asia. Botanischeskii Zh . 66, 584–588 (1981).

    Google Scholar 

  • 13.

    Muldashev, A. A. A critical review of the genus Ajania (Asteraceae-Anthemideae). Botanischeskii Zh . 68, 207–214 (1983).

    Google Scholar 

  • 14.

    Bremer, K. & Humphries, C. J. The generic monograph of the Asteraceae-Anthemideae. Bull. Nat. Hist. Mus. Lond. 23, 71–177 (1993).

    Google Scholar 

  • 15.

    Huang, Y., An, Y. M., Meng, S. Y., Guo, Y. P. & Rao, G. Y. Taxonomic status and phylogenetic position of Phaeostigma in the subtribe Artemisiinae (Asteraceae). J. Syst. Evol. 55, 426–436 (2017).

    Article  Google Scholar 

  • 16.

    Zhao, H. B., Chen, F. D., Chen, S. M., Wu, G. S. & Guo, W. M. Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences. Plant Syst. Evol. 284, 153–169 (2010).

    CAS  Article  Google Scholar 

  • 17.

    Liu, P. L., Wan, Q., Guo, Y. P., Yang, J. & Rao, G. Y. Phylogeny of the Genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences. PLoS ONE 7, e48970 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Ohashi, H. & Yonekura, K. New combinations in Chrysanthemum (Compositae-Anthemideae) of Asia with a list of Japanese Specie. J. Jpn. Bot. 79, 186–195 (2004).

    Google Scholar 

  • 19.

    Sanz, M. et al. Molecular phylogeny and evolution of floral characters of Artemisia and allies (Anthemideae, Asteraceae): evidence from nrDNA ETS and ITS sequences. Taxon 57, 1–13 (2008).

    Google Scholar 

  • 20.

    An, Y. M. Studies on the Phylogeny and Biogeography of the Genus Ajania and Its Allies. Master’s thesis. Peking University (2012).

  • 21.

    Barreda, V. D. et al. Eocene Patagonia fossils of the daisy family. Science 329, 1621–1621 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Wefferling, K. M. & Hoot, S. B. Dated phylogeography of western North American subalpine marshmarigolds (Caltha spp. Ranunculaceae): Miocene-Pliocene divergence of hexaploids, multiple origins of allododecaploids during the Pleistocene, and repeated recolonization of Last Glacial Maxim. J. Biogeogr. 45, 1077–1089 (2018).

    Article  Google Scholar 

  • 23.

    Wiens, J. J. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58, 193–197 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Ricklefs, R. E. Evolutionary diversification and the origin of the diversity-environment relationship. Ecology 87, S3–S13 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Li, J., Wan, Q., Guo, Y. P., Abbott, R. J. & Rao, G. Y. Should I stay or should I go: biogeographic and evolutionary history of a polyploid complex (Chrysanthemum indicum complex) in response to Pleistocene climate change in China. N. Phytol. 201, 1031–1044 (2014).

    CAS  Article  Google Scholar 

  • 26.

    Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Rahbek, C. et al. Building mountain biodiversity: Geological and evolutionary processes. Science 365, 1114–1119 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Cosacov, A., Sérsic, A. N., Sosa, V., Johnson, L. A. & Cocucci, A. A. Multiple periglacial refugia in the Patagonian steppe and post-glacial colonization of the Andes: the phylogeography of Calceolaria polyrhiza. J. Biogeogr. 37, 1463–1477 (2010).

    Google Scholar 

  • 29.

    García-Aloy, S. et al. North-west Africa as a source and refuge area of plant biodiversity: a case study on Campanula kremeri and Campanula occidentalis. J. Biogeogr. 44, 2057–2068 (2017).

    Article  Google Scholar 

  • 30.

    Pérez-Escobar, O. A. et al. Recent origin and rapid speciation of Neotropical orchids in the world’s richest plant biodiversity hotspot. N. Phytol. 215, 891–905 (2017).

    Article  Google Scholar 

  • 31.

    Zhao, Y. P. et al. Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nat. Commun. 10, 4201 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 32.

    Xing, Y. & Ree, R. H. Uplift-driven diversification in the Hengduan mountains, a temperate biodiversity hotspot. Proc. Natl Acad. Sci. USA 114, E3444 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Sun, H. 2002. Evolution of arctic-tertiary flora in Himalayan-Hengduan mountains. Acta Bot. Yunnanica. 24, 671–688 (2002).

    Google Scholar 

  • 34.

    Sun, H. & Li, Z. M. Qinghai-Tibet Plateau uplift and its impact on Tethys flora. Adv. Earth. Sci. 18, 852–862 (2003).

    Google Scholar 

  • 35.

    Zhang, D. C., Zhang, Y. H., Boufford, D. E. & Sun, H. Elevational patterns of species richness and endemism for some important taxa in the Hengduan mountains, southwestern China. Biodivers. Conserv. 18, 699–716 (2009).

    Article  Google Scholar 

  • 36.

    Royer, D. L., McElwain, J. C., Adams, J. M. & Wilf, P. Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. N. Phytol. 179, 808–817 (2008).

    Article  Google Scholar 

  • 37.

    Opedal, Ø. H., Armbruster, W. S. & Graae, B. J. Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecol. Divers. 8, 305–315 (2015).

    Article  Google Scholar 

  • 38.

    Tölgyesi, C. Tree-herb co-existence and community assembly in natural forest-steppe transitions. Plant Ecol. Divers. 11, 465–477 (2018).

    Article  Google Scholar 

  • 39.

    Rumpf, S. B. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Camarero, J. J., Gutiérrez, E. & Fortin, M. J. Spatial patterns of plant richness across treeline ecotones in the Pyrenees reveal different locations for richness and tree cover boundaries. Glob. Ecol. Biogeogr. 15, 182–191 (2006).

    Article  Google Scholar 

  • 41.

    Liang, E. et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 113, 4380–4385 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Li, P. et al. Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.). Mol. Genet. Genomics. 291, 1117–1125 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325 (1980).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Zhang, F. et al. SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol. Breed. 27, 11–23 (2011).

    CAS  Article  Google Scholar 

  • 45.

    Li, G. & Quiros, C. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103, 455–461 (2001).

    CAS  Article  Google Scholar 

  • 46.

    Shen, J. et al. Lake sediment records on climate change and human activities since the Holocene in Erhai catchment, Yunnan Province, China. Sci. China Ser. D. Earth Sci. 48, 353–363 (2005).

    CAS  Article  Google Scholar 

  • 47.

    Hoorn, C. et al. Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 344–345, 16–38 (2012).

    Article  Google Scholar 

  • 48.

    Cao, X., Ni, J., Herzschuh, U., Wang, Y. & Zhao, Y. A late Quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: Set up and evaluation. Rev. Palaeobot. Palyno. 194, 21–37 (2013).

    Article  Google Scholar 

  • 49.

    Li, S. et al. Magnetostratigraphy of the Dali Basin in Yunnan and implications for late Neogene rotation of the southeast margin of the Tibetan Plateau. J. Geophys. Res-Sol. Ea. 118, 791–807 (2013).

    Article  Google Scholar 

  • 50.

    Gourbet, L. et al. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution. Tectonophysics 700–701, 162–179 (2017).

    Article  CAS  Google Scholar 

  • 51.

    Wu, J. et al. Paleoelevations in the Jianchuan Basin of the southeastern Tibetan Plateau based on stable isotope and pollen grain analyses. Palaeogeogr. Palaeoclimatol. Palaeoecol. 510, 93–108 (2018).

    Article  Google Scholar 

  • 52.

    Li, Q., Wu, H., Yu, Y., Sun, A. & Luo, Y. Large-scale vegetation history in China and its response to climate change since the Last Glacial Maximum. Quat. Int. 500, 108–119 (2019).

    Article  Google Scholar 

  • 53.

    Mutanga, O. et al. Explaining grass-nutrient patterns in a savanna rangeland of southern Africa. J. Biogeogr. 31, 819–829 (2004).

    Article  Google Scholar 

  • 54.

    Rowe, R. J. Elevational gradient analyses and the use of historical museum specimens:a cautionary tale. J. Biogeogr. 32, 1883–1897 (2005).

    Article  Google Scholar 

  • 55.

    Barbo, D. N., Chappelka, A. H., Somers, G. L., Miller-Goodman, M. S. & Stolte, K. Diversity of an early successional plant community as influenced by ozone. N. Phytol. 138, 653–662 (1998).

    CAS  Article  Google Scholar 

  • 56.

    Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 57.

    Vermeer, J. & Peterson, R. L. Glandular trichomes on the inflorescence of Chrysanthemum morifolium cv. Dramatic (Compositae). II. Ultrastruct. Histochem. Can. J. Bot. 57, 705–713 (1979).

    Google Scholar 

  • 58.

    Ren, J. B. & Guo, Y. P. Behind the diversity: Ontogenies of radiate, disciform, and discoid capitula of Chrysanthemum and its allies. J. Syst. Evol. 53, 520–528 (2015).

    Article  Google Scholar 

  • 59.

    Li, J., Guo, Y. & Romane, F. Environmental heterogeneity and population variability of Sclerophyllous Oaks (Quercus Sec. suber) in East Himalayan region. Forestry Stud. China 2, 1–15 (2000).

    CAS  Google Scholar 

  • 60.

    Wright, A. J. et al. Plants are less negatively affected by flooding when growing in species-rich plant communities. N. Phytol. 213, 645–656 (2017).

    Article  Google Scholar 

  • 61.

    Hughes, C. E. & Atchison, G. W. The ubiquity of alpine plant radiations: from the Andes to the Hengduan mountains. N. Phytol. 207, 275–282 (2015).

    Article  Google Scholar 

  • 62.

    Pfister, C. A. & Hay, M. E. Associational plant refuges: convergent patterns in marine and terrestrial communities result from differing mechanisms. Oecologia 77, I18–I129 (1988).

    Article  Google Scholar 

  • 63.

    Zhang, Y. C., Shi, G. R. & Shen, S. Z. A review of Permian stratigraphy, palaeobiogeography and palaeogeography of the Qinghai–Tibet plateau. Gondwana Res. 24, 55–76 (2013).

    CAS  Article  Google Scholar 

  • 64.

    Zhou, X. et al. Vegetation change and evolutionary response of large mammal fauna during the mid-Pleistocene transition in temperate northern East Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 505, 287–294 (2018).

    Article  Google Scholar 

  • 65.

    Barreda, V. D. et al. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica. Proc. Natl Acad. Sci. USA 112, 10989–10994 (2105).

    Article  CAS  Google Scholar 

  • 66.

    Huang, C. H. et al. Multiple polyploidization events across asteraceae with two nested events in the early history revealed by nuclear phylogenomics. Mol. Biol. Evol. 33, 2820–2835 (2016).

  • 67.

    Credner, W. Geography Investigation Report in 1931. In: Report Collecton of Department of Geography, Vol. 1, 1–35 (National Sun Yat-sen University, 1931).

  • 68.

    Credner, W. Observation on geology and morphology of Yunnan. Geol. Surv. Kwangtung Kwangshi, Spec. Publ. No. X, 51 (1932).

    Google Scholar 

  • 69.

    Yang, J. Q., Cui, Z. J., Yi, C. L., Sun, J. M. & Yang, L. R. “Tali Glaciation” on Massif Diancang. Sci. China Ser. D 50, 1685–1692 (2007).

    Article  Google Scholar 

  • 70.

    Hoke, G. D., Zeng, J. L., Hren, M. T., Wissink, G. K. & Garzione, C. N. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth Planet. Sc. Lett. 394, 270–278 (2014).

    CAS  Article  Google Scholar 

  • 71.

    Li, S., Currie, B. S., Rowley, D. B. & Ingalls, M. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: constraints on the tectonic evolution of the region. Earth Planet. Sc. Lett. 432, 415–424 (2015).

    CAS  Article  Google Scholar 

  • 72.

    Kuang, M. et al. Study on the Palaeovegation and Palaeoclimate Since Late Pleistocene in the Dianchang Mountain Area in Dali of YunNan Province. J. Southwest China Norm. Univ 27, 759–765 (2002).

    Google Scholar 

  • 73.

    Xiao, X. et al. Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan Province, southwestern China. Quat. Sci. Rev. 86, 35–48 (2014).

    Article  Google Scholar 

  • 74.

    Mandela, J. R. et al. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl Acad. Sci. USA 116, 14083–14088 (2019).

    Article  CAS  Google Scholar 

  • 75.

    Sheldon, N. D. Quaternary glacial-interglacial climate cycles in Hawaii. J. Geol. 114, 367–376 (2006).

    Article  Google Scholar 

  • 76.

    Milbau, A., Shevtsova, A., Osler, N., Mooshammer, M. & Graae, B. J. Plant community type and small-scale disturbances, but not altitude, influence the invasibility in subarctic ecosystems. N. Phytol. 197, 1002–1011 (2013).

    Article  Google Scholar 

  • 77.

    Wang, W. M. On the origin and development of Artemisia (Asteraceae) in the geological past. Bot. J. Linn. Soc. 145, 331–336 (2004).

    Article  Google Scholar 

  • 78.

    Pellicer, J. et al. Palynological study of Ajania and related genera (Asteraceae, Anthemideae). Bot. J. Linn. Soc. 161, 171–189 (2009).

    Article  Google Scholar 

  • 79.

    Friedman, J. & Barrett, S. C. H. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann. Bot.-Lond. 103, 1515–1527 (2009).

    Article  Google Scholar 

  • 80.

    Watson, L. E., Bates, P. L., Evans, T. M., Unwin, M. M. & Estes, R. J. Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera. BMC Evol. Biol. 2, 17–28 (2002).

    PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Technique reveals deeper insights into the makeup of nacre, a natural material

    Food or just a free ride? A meta-analysis reveals the global diversity of the Plastisphere