in

Sources of solutes and carbon cycling in perennially ice-covered Lake Untersee, Antarctica

  • 1.

    Matsumoto, G. I. et al. Geochemical characteristics of Antarctic lakes and ponds. Proc. NIPR Symp. Polar Biol. 5, 125–145 (1992).

    Google Scholar 

  • 2.

    Doran, P. T. et al. Paleolimnology of extreme cold terrestrial and extraterrestrial environments. In Long-Term Environmental Change in Arctic and Antarctic Lakes 475–507 (Springer, 2004); https://doi.org/10.1007/978-1-4020-2126-8_15.

  • 3.

    Wharton, R. A., Lyons, W. B. & Des Marais, D. J. Stable isotopic biogeochemistry of carbon and nitrogen in a perennially ice-covered Antarctic lake. Chem. Geol. 107, 159–172 (1993).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    Gibson, J. A. E. et al. Biogeographic Trends in Antarctic Lake Communities. In Trends in Antarctic Terrestrial and Limnetic Ecosystems 71–99 (Springer, 2006). https://doi.org/10.1007/1-4020-5277-4_5.

  • 5.

    Hawes, I., Sumner, D. Y., Andersen, D. T. & Mackey, T. J. Legacies of recent environmental change in the benthic communities of Lake Joyce, a perennially ice-covered Antarctic lake. Geobiology 9, 394–410 (2011).

    CAS  PubMed  Google Scholar 

  • 6.

    Jungblut, A. D., Lovejoy, C. & Vincent, W. F. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 4, 191–202 (2010).

    CAS  PubMed  Google Scholar 

  • 7.

    Lawson, J., Doran, P. T., Kenig, F., Des Marais, D. J. & Priscu, J. C. Stable carbon and nitrogen isotopic composition of benthic and pelagic organic matter in lakes of the McMurdo Dry Valleys, Antarctica. Aquat. Geochem. 10, 269–301 (2004).

    CAS  Google Scholar 

  • 8.

    Neumann, K., Lyons, W. B., Priscu, J. C., Desmarais, D. J. & Welch, K. A. The carbon isotopic composition of dissolved inorganic carbon in perennially ice-covered Antarctic lakes: searching for a biogenic signature. Ann. Glaciol. 39, 518–524 (2004).

    ADS  CAS  Google Scholar 

  • 9.

    Hawes, I., Jungblut, A. D., Obryk, M. K. & Doran, P. T. Growth dynamics of a laminated microbial mat in response to variable irradiance in an Antarctic lake. Freshw. Biol. 61, 396–410 (2016).

    Google Scholar 

  • 10.

    Hermichen, W.-D., Kowski, P. & Wand, U. Lake Untersee, a first isotope study of the largest freshwater lake in the interior of East Antarctica. Nature 315, 131–133 (1985).

    ADS  CAS  Google Scholar 

  • 11.

    Wand, U., Schwarz, G., Brüggemann, E. & Bräuer, K. Evidence for physical and chemical stratification in Lake Untersee (central Dronning Maud Land, East Antarctica). Antarct. Sci. 9, 43–45 (1997).

    ADS  Google Scholar 

  • 12.

    Andersen, D. T., Sumner, D. Y., Hawes, I., Webster-Brown, J. & McKay, C. P. Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9, 280–293 (2011).

    CAS  PubMed  Google Scholar 

  • 13.

    Faucher, B., Lacelle, D., Fisher, D. A., Andersen, D. T. & McKay, C. P. Energy and water mass balance of Lake Untersee and its perennial ice cover, East Antarctica. Antarct. Sci. 31, 271–285 (2019).

    ADS  Google Scholar 

  • 14.

    Weisleitner, K., Perras, A., Moissl-Eichinger, C., Andersen, D. T. & Sattler, B. Source environments of the microbiome in perennially ice-covered Lake Untersee, Antarctica. Front. Microbiol. 10, 1019 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Hawes I., Sumner D., & Jungblut A. D. Complex structure but simple function in microbial mats from Antarctic Lakes. In The Structure and Function of Aquatic Microbial Communities. Advances in Environmental Microbiology, Vol. 7 (ed Hurst, C.) (Springer, Cham, 2019) https://doi.org/10.1007/978-3-030-16775-2_4.

    Google Scholar 

  • 16.

    Koo, H. et al. Microbial communities and their predicted metabolic functions in growth laminae of a unique large conical mat from Lake Untersee, East Antarctica. Front. Microbiol. 8, 1347 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Faucher, B., Lacelle, D., Fisher, D. A., Weisleitner, K. & Andersen, D. T. Modeling δD-δ18O steady-state of well-sealed perennially ice covered-lakes and their recharge source: examples from Lake Untersee and Lake Vostok, Antarctica. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00220 (2020).

    Article  Google Scholar 

  • 18.

    McKay, C. P., Andersen, D. & Davila, A. Antarctic environments as models of planetary habitats: University Valley as a model for modern Mars and Lake Untersee as a model for Enceladus and ancient Mars. Polar J. 7, 303–318 (2017).

    Google Scholar 

  • 19.

    Bormann, P. The Schirmacher Oasis, Queen Maud Land, East Antarctica and its surroundings. Polarforschung 64, 151–153 (1995).

    Google Scholar 

  • 20.

    Paech, H.-J. & Stackebrandt, W. Geology. In The Schirmacher Oasis, Queen Maud Land, East Antarctica and its surroundings (eds Bormann, P., & Fritzsche, D.) 59–159 (Petermanns Geographische Mitteilungen, 1995).

  • 21.

    Andersen, D. T., McKay, C. P. & Lagun, V. Climate conditions at perennially ice-covered Lake Untersee, East Antarctica. J. Appl. Meteorol. Climatol. 54, 1393–1412 (2015).

    ADS  Google Scholar 

  • 22.

    Hoffman, M. J., Fountain, A. G. & Liston, G. E. Surface energy balance and melt thresholds over 11 years at Taylor Glacier, Antarctica. J. Geophys. Res. 113, F04014 (2008).

    ADS  Google Scholar 

  • 23.

    Steel, H. C. B., McKay, C. P. & Andersen, D. T. Modeling circulation and seasonal fluctuations in perennially ice-covered and ice-walled Lake Untersee, Antarctica. Limnol. Oceanogr. 60, 1139–1155 (2015).

    ADS  Google Scholar 

  • 24.

    Bevington, J. et al. The thermal structure of the anoxic trough in Lake Untersee, Antarctica. Antarct. Sci. 30, 333–344 (2018).

    ADS  Google Scholar 

  • 25.

    Wand, U., Samarkin, V. A., Nitzsche, H.-M. & Hubberten, H.-W. Biogeochemistry of methane in the permanently ice-covered Lake Untersee, central Dronning Maud Land, East Antarctica. Limnol. Oceanogr. 51, 1180–1194 (2006).

    ADS  CAS  Google Scholar 

  • 26.

    McKay, C. P., Clow, G. D., Wharton, R. A. & Squyres, S. W. Thickness of ice on perennially frozen lakes. Nature 313, 561–562 (1985).

    ADS  CAS  PubMed  Google Scholar 

  • 27.

    Kaup, E., Loopman, A., Klokov, V., Simonov, I. & Haendel, D. Limnological investigations in the Untersee Oasis. In Limnological Studies in Queen Maud Land (East Antarctica) (ed. Martin, J.) 28–42 (Valgus, Tallinn, 1988).

    Google Scholar 

  • 28.

    Isaksson, E. et al. A century of accumulation and temperature changes in Dronning Maud Land, Antarctica. J. Geophys. Res. Atmos. 101, 7085–7094 (1996).

    ADS  Google Scholar 

  • 29.

    Killawee, J. A., Fairchild, I. J., Tison, J. L., Janssens, L. & Lorrain, R. Segregation of solutes and gases in experimental freezing of dilute solutions: implications for natural glacial systems. Geochim. Cosmochim. Acta 62, 3637–3655 (1998).

    ADS  CAS  Google Scholar 

  • 30.

    Santibáñez, P. A. et al. Differential incorporation of bacteria, organic matter, and inorganic ions into lake ice during ice formation. J. Geophys. Res. Biogeosciences 124, 585–600 (2019).

    ADS  Google Scholar 

  • 31.

    Jonsell, U., Hansson, M. E., Mörth, C. M. & Torssander, P. Sulfur isotopic signals in two shallow ice cores from Dronning Maud Land, Antarctica. Tellus Ser. B Chem. Phys. Meteorol. 57, 341–350 (2005).

    ADS  Google Scholar 

  • 32.

    Patris, N., Delmas, R. J. & Jouzel, J. Isotopic signatures of sulfur in shallow Antarctic ice cores. J. Geophys. Res. Atmos. 105, 7071–7078 (2000).

    ADS  CAS  Google Scholar 

  • 33.

    Castellano, E. et al. Holocene volcanic history as recorded in the sulfate stratigraphy of the European Project for Ice Coring in Antarctica Dome C (EDC96) ice core. J. Geophys. Res. Atmos. 110, D06114. https://doi.org/10.1029/2004JD005259 (2005).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Wolff, E. W. et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440, 491–496 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 35.

    Mayewski, P. A. et al. Climate change during the last deglaciation in Antarctica. Science 272, 1636–1638 (1996).

    ADS  CAS  PubMed  Google Scholar 

  • 36.

    Alexander, B. et al. East Antarctic ice core sulfur isotope measurements over a complete glacial–interglacial cycle. J. Geophys. Res. Atmos. 108, 4786 (2003).

    ADS  Google Scholar 

  • 37.

    Nielsen, H., Pilot, J., Grinenko, L. N., Grinenko, V. A. & Lein, A. Y. Lithospheric sources of sulphur. In Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment (ed. Krouse, H.) 65–132 (Wiley, New York, 1991).

    Google Scholar 

  • 38.

    Parkhurst, D. L. & Appelo, C. A. J. Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, book 6, chapter A43 (2013). https://doi.org/10.1016/0029-6554(94)90020-5.

  • 39.

    Blum, J. D. & Erel, Y. A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation. Nature 373, 415–418 (1995).

    ADS  CAS  Google Scholar 

  • 40.

    Blum, J. D. & Erel, Y. Rb–Sr isotope systematics of a granitic soil chronosequence: the importance of biotite weathering. Geochim. Cosmochim. Acta 61, 3193–3204 (1997).

    ADS  CAS  Google Scholar 

  • 41.

    Takacs, C. D., Priscu, J. C. & McKnight, D. M. Bacterial dissolved organic carbon demand in McMurdo Dry Valley lakes, Antarctica. Limnol. Oceanogr. 46, 1189–1194 (2001).

    ADS  CAS  Google Scholar 

  • 42.

    Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).

    ADS  CAS  Google Scholar 

  • 43.

    Lyons, W. B. et al. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica. Appl. Geochem. 32, 26–36 (2013).

    CAS  Google Scholar 

  • 44.

    Hayes, J. M. Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Mar. Geol. 113, 111–125 (1993).

    ADS  CAS  Google Scholar 

  • 45.

    Hage, M. M., Uhle, M. E. & Macko, S. Biomarker and stable isotope characterization of coastal pond-derived organic matter, McMurdo Dry Valleys, Antarctica. Astrobiology 7, 645–661 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 46.

    Calder, J. A. & Parker, P. L. Geochemical implications of induced changes in C13 fractionation by blue-green algae. Geochim. Cosmochim. Acta 37, 133–140 (1973).

    ADS  CAS  Google Scholar 

  • 47.

    Pardue, J. W., Scalan, R. S., Van Baalen, C. & Parker, P. L. Maximum carbon isotope fractionation in photosynthesis by blue-green algae and a green alga. Geochim. Cosmochim. Acta 40, 309–312 (1976).

    ADS  CAS  Google Scholar 

  • 48.

    Wada, E. et al. Ecological aspects of carbon and nitrogen isotope ratios of cyanobacteria. Plankt. Benthos Res. 7, 135–145 (2012).

    Google Scholar 

  • 49.

    Gow, A. J. & Williamson, T. Gas inclusions in the Antarctic ice sheet and their significance. US Army Corps Eng Cold Reg Res Eng Lab Res Rep (1975).

  • 50.

    Samyn, D., Fitzsimons, S. J. & Lorrain, R. D. Strain-induced phase changes within cold basal ice from Taylor Glacier, Antarctica, indicated by textural and gas analyses. J. Glaciol. 51, 611–619 (2005).

    ADS  Google Scholar 

  • 51.

    Monnin, E. et al. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth Planet. Sci. Lett. 224, 45–54 (2004).

    ADS  CAS  Google Scholar 

  • 52.

    Schmitt, J. et al. Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336, 711–714 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 53.

    Eggleston, S., Schmitt, J., Bereiter, B., Schneider, R. & Fischer, H. Evolution of the stable carbon isotope composition of atmospheric CO2 over the last glacial cycle. Paleoceanography 31, 434–452 (2016).

    ADS  Google Scholar 

  • 54.

    Clark, I. Groundwater Geochemistry and Isotopes (CRC Press, Cambridge, 2015). https://doi.org/10.1201/b18347.

    Google Scholar 

  • 55.

    Wadham, J. L. et al. Biogeochemical weathering under ice: size matters. Glob. Biogeochem. Cycles 24, GB3025 (2010).

    ADS  Google Scholar 

  • 56.

    Wynn, P. M., Hodson, A. & Heaton, T. Chemical and isotopic switching within the subglacial environment of a high Arctic Glacier. Biogeochemistry 78, 173–193 (2006).

    CAS  Google Scholar 

  • 57.

    Graly, J. A., Drever, J. I. & Humphrey, N. F. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems. Glob. Biogeochem. Cycles 31, 709–727 (2017).

    ADS  CAS  Google Scholar 

  • 58.

    Badger, M. The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms. Photosynth. Res. https://doi.org/10.1023/A:1025821717773 (2003).

    Article  PubMed  Google Scholar 

  • 59.

    Eigenbrode, J. L. & Freeman, K. H. Late Archean rise of aerobic microbial ecosystems. Proc. Natl. Acad. Sci. 103, 15759–15764 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 60.

    Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 61.

    Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P. & Burch, I. W. Stromatolite reef from the early Archaean era of Australia. Nature 441, 714–718 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 62.

    Tomkins, J. D., Antoniades, D., Lamoureux, S. F. & Vincent, W. F. A simple and effective method for preserving the sediment–water interface of sediment cores during transport. J. Paleolimnol. 40, 577–582 (2008).

    ADS  Google Scholar 

  • 63.

    St-Jean, G. Automated quantitative and isotopic (13C) analysis of dissolved inorganic carbon and dissolved organic carbon in continuous-flow using a total organic carbon analyser. Rapid Commun. Mass Spectrom. 17, 419–428 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 64.

    Murseli, S., et al. The preparation of water (DIC, DOC) and gas (CO2, CH4) samples for radiocarbon analysis at AEL-AMS, Ottawa, Canada. Radiocarbon 61, 1563–1571 https://doi.org/10.1017/RDC.2019.14 (2019).

  • 65.

    Crann, C. A. et al. First status report on radiocarbon sample preparation techniques at the A.E. Lalonde AMS Laboratory (Ottawa, Canada). Radiocarbon 59, 695–704 (2017).

    CAS  Google Scholar 

  • 66.

    Stuiver, M. & Polach, H. A. Reporting of 14C data. Radiocarbon 19, 355–363 (1977).

    Google Scholar 

  • 67.

    Lyons, W. B., Welch, K. A., Priscu, J. C., Tranter, M. & Royston-Bishop, G. Source of Lake Vostok cations constrained with strontium isotopes. Front. Earth Sci. 4, 78 (2016).

    ADS  Google Scholar 

  • 68.

    Lyons, W. B. et al. Strontium isotopic signatures of the streams and lakes of Taylor Valley, Southern Victoria Land, Antarctica: chemical weathering in a polar climate. Aquat. Geochem. 8, 75–95 (2002).

    CAS  Google Scholar 

  • 69.

    Friedman, I., Rafter, A. & Smith, G. I. A thermal, isotopic, and chemical study of Lake Vanda and Don Juan Pond, Antartica. In Contributions to Antarctic Research IV, volume 67 (eds. Elliot, D. H. & Blaisdell, G. L.) 47–74 (1995). https://doi.org/10.1002/9781118668207.ch5.

  • 70.

    Grousset, F. E. et al. Antarctic (Dome C) ice-core dust at 18 k.y. B.P.: isotopic constraints on origins. Earth Planet. Sci. Lett. 111, 175–182 (1992).

    ADS  CAS  Google Scholar 

  • 71.

    Burton, G., Morgan, V., Boutron, C. & Rosman, K. J. High-sensitivity measurements of strontium isotopes in polar ice. Anal. Chim. Acta 469, 225–233 (2002).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Engineering superpowered organisms for a more sustainable world

    Letter from President Reif: Tackling the grand challenges of climate change