in

Southern Ocean convection amplified past Antarctic warming and atmospheric CO2 rise during Heinrich Stadial 4

  • 1.

    Barker, S. et al. 800,000 years of abrupt climate variability. Science 334, 347–351 (2011).

    CAS  Article  Google Scholar 

  • 2.

    Stocker, T. F. & Johnsen, S. J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, PA1087 (2003).

    Article  Google Scholar 

  • 3.

    Wais Divide Project Members et al. Precise interpolar phasing of abrupt climate change during the last ice age. Nature 520, 661, https://doi.org/10.1038/nature14401 (2015).

    CAS  Article  Google Scholar 

  • 4.

    EPICA community members. One-to-one coupling of glacial variability in Greenland and Antarctica. Nature 444, 195–198 (2006).

    Article  Google Scholar 

  • 5.

    Barker, S. et al. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457, 1097–1102 (2009).

    CAS  Article  Google Scholar 

  • 6.

    Schmittner, A., Saenko, O. A. & Weaver, A. J. Coupling of the hemispheres in observations and simulations of glacial climate change. Quat. Sci. Rev. 22, 659–671 (2003).

    Article  Google Scholar 

  • 7.

    Seidov, D. & Maslin, M. Atlantic Ocean heat piracy and the bipolar climate see-saw during Heinrich and Dansgaard-Oeschger events. J Quat. Sci. 16, 321–328 (2001).

    Article  Google Scholar 

  • 8.

    Pedro, J. B. et al. Beyond the bipolar seesaw: toward a process understanding of interhemispheric coupling. Quat. Sci. Rev. 192, 27–46, https://doi.org/10.1016/j.quascirev.2018.05.005 (2018).

    Article  Google Scholar 

  • 9.

    Kageyama, M. et al. Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study. Clim. Past 9, 935–953 (2013).

    Article  Google Scholar 

  • 10.

    Stouffer, R. et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Clim. 19, 1365–1387 (2006).

    Article  Google Scholar 

  • 11.

    Ganopolski, A. & Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158 (2001).

    CAS  Article  Google Scholar 

  • 12.

    Menviel, L., Spence, P. & England, M. H. Contribution of enhanced Antarctic Bottom Water formation to Antarctic warm events and millennial-scale atmospheric CO2 increase. Earth Planet. Sci. Lett. 413, 37–50, https://doi.org/10.1016/j.epsl.2014.12.050 (2015).

    CAS  Article  Google Scholar 

  • 13.

    Hemming, S. R. Heinrich events: massive late pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, 1–43 (2004).

    Article  Google Scholar 

  • 14.

    Henry, L. G. et al. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 353, 470–474, https://doi.org/10.1126/science.aaf5529 (2016).

    CAS  Article  Google Scholar 

  • 15.

    Skinner, L. C. & Elderfield, H. Rapid fluctuations in the deep North Atlantic heat budget during the last glaciation. Paleoceanography 22, PA1205 (2007).

    Article  Google Scholar 

  • 16.

    Skinner, L. C., Shackleton, N. J. & Elderfield, H. Millennial-scale variability of deep-water temperature and d18Odw indicating deep-water source variations in the Northeast Atlantic, 0–34 cal. ka BP. Geochem. Geophys. Geosys. 4, 1–17 (2003).

    Article  Google Scholar 

  • 17.

    Weldeab, S., Friedrich, T., Timmermann, A. & Schneider, R. R. Strong middepth warming and weak radiocarbon imprints in the equatorial Atlantic during Heinrich 1 and Younger Dryas. Paleoceanography 31, 1070–1082, https://doi.org/10.1002/2016pa002957 (2016).

    Article  Google Scholar 

  • 18.

    Repschläger, J., Weinelt, M., Andersen, N., Garbe-Schönberg, D. & Schneider, R. Northern source for Deglacial and Holocene deepwater composition changes in the Eastern North Atlantic Basin. Earth Planet. Sci. Lett. 425, 256–267, https://doi.org/10.1016/j.epsl.2015.05.009 (2015).

    CAS  Article  Google Scholar 

  • 19.

    Marcott, S. A. et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl Acad. Sci. USA 108, 13415–13419, https://doi.org/10.1073/pnas.1104772108 (2011).

    Article  Google Scholar 

  • 20.

    Weldeab, S., Arce, A. & Kasten, S. Mg/Ca- CO2-temperature calibration for Globobulimina spp.: a sensitive paleothermometer for deep-sea temperature reconstruction. Earth Planet. Sci. Lett. 438, 95–102 (2016).

    CAS  Article  Google Scholar 

  • 21.

    Roberts, J. et al. Evolution of South Atlantic density and chemical stratification across the last deglaciation. Proc. Natl Acad. Sci. USA, 1–6, http://www.pnas.org/cgi/doi/10.1073/pnas.1511252113 (2016).

  • 22.

    Bryan, S. & Marchitto, T. Mg/Ca-temperature proxy in benthic foraminifera: new calibrations from the Florida Straits and a hypothesis regarding Mg/Li. Paleoceanography 23 (2008).

  • 23.

    Elderfield, H., Yu, J., Anand, P., Keifer, T. & Nyland, B. Calibrations for benthic foraminiferal Mg/Ca palaeothermometry and the carbonate ion hypothesis. Earth Planet. Sci. Lett. 250, 633–649 (2006).

    CAS  Article  Google Scholar 

  • 24.

    de Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R. & Marinov, I. Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Clim. Change 4, 278–282, https://doi.org/10.1038/nclimate2132 (2014).

    Article  Google Scholar 

  • 25.

    Gottschalk, J. et al. Abrupt changes in the southern extent of North Atlantic Deep Water during Dansgaard-Oeschger events. Nat. Geosci. 8, 950–954, https://doi.org/10.1038/ngeo2558 (2015).

    CAS  Article  Google Scholar 

  • 26.

    Stocker, T. F., Timmermann, A., Renold, M. & Timm, O. Effects of salt compensation on the climate model response in simulations of large changes of the Atlantic Meridional Overturning Circulation. J. Clim. 20, 5912–5928 (2007).

    Article  Google Scholar 

  • 27.

    Schmittner, A., Brook, E. J. & Ahn, J. In Ocean circulation: mechanisms and impacts (eds A. Schmittner A. et al.) 315–334 (AGU Monograph, 2007).

  • 28.

    Schmittner, A. & Galbraith, E. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature 456, 373–376 (2008).

    CAS  Article  Google Scholar 

  • 29.

    Buizert, C. et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 563, 681–685, https://doi.org/10.1038/s41586-018-0727-5 (2018).

    CAS  Article  Google Scholar 

  • 30.

    Menviel, L. et al. Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nature Communications 9, 2503, https://doi.org/10.1038/s41467-018-04876-4 (2018).

    CAS  Article  Google Scholar 

  • 31.

    Gottschalk, J. et al. Mechanisms of millennial-scale atmospheric CO2 change in numerical model simulations. Quat. Sci. Rev. 220, 30–74, https://doi.org/10.1016/j.quascirev.2019.05.013 (2019).

    Article  Google Scholar 

  • 32.

    Galbraith, E. D., Merlis, T. M. & Palter, J. B. Destabilization of glacial climate by the radiative impact of Atlantic Meridional Overturning Circulation disruptions. Geophys. Res. Lett. 43, 8214–8221, https://doi.org/10.1002/2016GL069846 (2016).

    Article  Google Scholar 

  • 33.

    Broecker, W. S. Palaeocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography 13, 119–121 (1998).

    Article  Google Scholar 

  • 34.

    Skinner, L. C., Waelbroeck, C., Scrivner, A. & Fallon, S. Radiocarbon evidence for alternating northern and southern sources of ventilation of the deep Atlantic carbon pool during the last deglaciation. Proc. Natl Acad. Sci. USA 111, 5480–5484, http://www.pnas.org/cgi/doi/10.1073/pnas.1400668111 (2014).

    CAS  Article  Google Scholar 

  • 35.

    Brown, N. & Galbraith, E. D. Hosed vs. unhosed: interruptions of the Atlantic Meridional Overturning Circulation in a global coupled model, with and without freshwater forcing. Clim. Past 12, 1663–1679, https://doi.org/10.5194/cp-12-1663-2016 (2016).

    Article  Google Scholar 

  • 36.

    Barker, S. et al. Icebergs not the trigger for North Atlantic cold events. Nature 520, 333–338 (2015).

    CAS  Article  Google Scholar 

  • 37.

    Gottschalk, J. et al. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nat. Commun. 7, 11539, https://doi.org/10.1038/ncomms11539 (2016).

    CAS  Article  Google Scholar 

  • 38.

    Jaccard, S. L., Galbraith, E. D., Martínez-García, A. & Anderson, R. F. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age. Nature 530, 207–210, https://doi.org/10.1038/nature16514 (2016).

    CAS  Article  Google Scholar 

  • 39.

    Thompson, A. F., Hines, S. K. V. & Adkins, J. F. A Southern Ocean mechanism for the interhemispheric coupling and phasing of the bipolar seesaw. J Clim. 32, 4347–4365 (2019).

    Article  Google Scholar 

  • 40.

    Hines, S. K. V., Thompson, A. F. & Adkins, J. F. The role of the Southern Ocean in abrupt transitions and hysteresis in glacial ocean circulation. Paleoceanogr. Paleoclimatol. 34, 490–510, https://doi.org/10.1029/2018pa003415 (2019).

    Article  Google Scholar 

  • 41.

    Skinner, L. C., Muschitiello, F. & Scrivner, A. E. Marine reservoir age variability over the last deglaciation: implications for marine carboncycling and prospects for regional radiocarbon calibrations. Paleoceanogr. Paleoclimatol. 34, 1807–1815, https://doi.org/10.1029/2019pa003667 (2019).

    Article  Google Scholar 

  • 42.

    Baggenstos, D. et al. Earth’s radiative imbalance from the Last Glacial Maximum to the present. Proc. Natl Acad. Sci. USA 116, 14881–14886, https://doi.org/10.1073/pnas.1905447116 (2019).

    CAS  Article  Google Scholar 

  • 43.

    Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Severinghaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39–44 (2018).

    CAS  Article  Google Scholar 

  • 44.

    Boiteau, R., Greaves, M. & Elderfield, H. Authigenic uranium in foraminiferal coatings: a proxy for ocean redox chemistry. Paleoceanography 27, https://doi.org/10.1029/2012pa002335 (2012).

  • 45.

    Klinkhammer, G. & Palmer, M. R. Uranium in the oceans: where it goes and why. Geochim. Cosmochim. Acta 55, 1799–1806 (1991).

    CAS  Article  Google Scholar 

  • 46.

    Skinner, L. et al. Rare earth elements in the service of palaeoceanography: a novel microanalysis approach. Geochim. Cosmochim. Acta 245, 118–132 (2019).

    CAS  Article  Google Scholar 

  • 47.

    Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosys. 4, 84078 (2003).

    Article  Google Scholar 

  • 48.

    Yu, J., Day, J. A., Greaves, M. J. & Elderfield, H. Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS. Geochem. Geophys. Geosys. 6, Q08P01 (2005).

    Article  Google Scholar 

  • 49.

    Locarnini, R. A. et al. NOAA Atlas NESDIS Vol. 73 (eds Levitus S. & Mishonov, A. V.) (Maryland Ocean Climate Laboratory, 2013).

  • 50.

    Garcia, H. E. et al. In NOAA Atlas NESDIS Vol. 75 (eds Levitus S. & Mishonov A. V.) 27 (U.S Government Printing Office, 2004).

  • 51.

    Svensson, A. et al. A 60,000 year Greenland stratigraphic ice core chronology. Clim. Past 4, 47–57 (2008).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Evaluating battery revenues for offshore wind farms using advanced modeling

    Phytoliths in selected broad-leaved trees in China