Bathurst, R. G. C. Carbonate sediments and their diagenesis (Elsevier, Amsterdam, 1971).
Beach, K. et al. Variability in the ecophysiology of Halimeda spp. (Chlorphyta, Bryopsidales) on Conch Reef, Florida Keys, USA. J. Phycol. 39, 633–643 (2003).
Vroom, P. S. et al. Field biology of Halimeda tuna (Bryopsidales, Chlorophyta) across a depth gradient: Comparative growth, survivorship, recruitment, and reproduction. Hydrobiologia 501, 149–166 (2003).
Littler, M. M., Littler, D. S., Blair, S. M. & Norris, J. N. Deepest known plant life discovered on an uncharted seamount. Science 227, 57–59 (1985).
Littler, M. M., Littler, D. S., Blair, S. M. & Norris, J. N. Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: Distribution, abundance, and primary productivity. Deep Sea Res. Part A Oceanogr. Res. Pap. 33, 881–892 (1986).
Blair, S. M. & Norris, J. N. The deep-water species of Halimeda Lamouroux (Halimedaceae, Chlorophyta) from San Salvador Island, Bahamas: Species composition, distribution and depth records. Coral Reefs 6, 227–236 (1988).
Drew, E. A. & Abel, K. M. Studies on Halimeda: II. Reproduction, particularly the seasonality of gametangia formation, in a number of species from the Great Barrier Reef Province. Coral Reefs 6, 207–218 (1988).
Johns, H. D. & Moore, C. H. Reef to basin sediment transport using Halimeda as a sediment tracer, Grand Cayman Island. West Indies. Coral Reefs 6, 187–193 (1988).
Schupp, P. J. & Paul, V. J. Calcium carbonate and secondary metabolites in tropical seaweeds: Variable effects on herbivorous fishes. Ecology 75, 1172–1185 (1993).
Littler, M. M. & Littler, D. S. Blade abandonment/proliferation: a novel mechanism for rapid epiphyte control in marine macrophytes. Ecology 80, 1736–1746 (1999).
Wefer, G. Carbonate production by algae Halimeda, Penicillus and Padina. Nature 285, 323–324 (1980).
Wiman, S. K. & McKendree, W. G. Distribution of Halimeda plants and sediments on and around a patch reef near Old Rhodes Key Florida. J. Sediment. Res. 45, 415–421 (1975).
Mankiewicz, C. Occurrence and paleocologic significance of Halimeda in late Miocene reefs, southeastern Spain. Coral Reefs 6, 271–279 (1988).
Hillis, L. W. The calcareous reef alga Halimeda (Chlorophyta, Byropsidales): A cretaceous genus that diversified in the cenozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 166, 89–100 (2001).
Stanley, S. M. Effects of global seawater chemistry on biomineralization: Past, present, and future. Chem. Rev. 108, 4483–4498 (2008).
Wefer, G. & Berger, W. H. Stable isotope composition of benthic calcareous algae from Bermuda. J. Sediment. Res. 51, 459–465 (1981).
Flügel, E. Halimeda: paleontological record and palaeoenvironmental significance. Coral Reefs 6, 123–130 (1988).
Rao, V. P. et al. Late quaternary Halimeda bioherms and aragonitic faecal pellet-dominated sediments on the carbonate platform of the western continental shelf of India. Mar. Geol. 121, 293–315 (1994).
Stanley, S. M., Ries, J. B. & Hardie, L. A. Nonlinear partial differential equations and applications: From the Cover: Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition. Proc. Natl. Acad. Sci. 99, 15323–15326 (2002).
Stanley, S. M. Influence of seawater chemistry on biomineralization throughout phanerozoic time: Paleontological and experimental evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 214–236 (2006).
Brachert, T. C. et al. High salinity variability during the early Messinian revealed by stable isotope signatures from vermetid and Halimeda reefs of the Mediterranean region. Geol. Romana 40, 51–66 (2007).
Urey, H. C. The thermodynamic properties of isotopic substances. J. Chem. Soc. 31, 562–581 (1947).
Urey, H. C., Lowenstam, H. A., Epstein, S. & McKINNEY, C. R. Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. Geol. Soc. Am. Bull. 62, 399 (1951).
Epstein, S., Buchsbaum, R., Lowenstam, H. & Urey, H. C. Carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull. 62, 417 (1951).
Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Revised carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull. 64, 1315 (1953).
Tabouret, H. et al. Simultaneous use of strontium: calcium and barium: calcium ratios in otoliths as markers of habitat: Application to the European eel (Anguilla anguilla) in the Adour basin South West France. Mar. Environ. Res. 70, 35–45 (2010).
Ren, L. et al. Deconvolving the δ18O seawater component from subseasonal coral δ18O and Sr/Ca at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 1997. Geochim. Cosmochim. Acta 67, 1609–1621 (2003).
Grossman, E. L. & Ku, T.-L. Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chem. Geol. 59, 59–74 (1986).
Weber, J. N. & Woodhead, P. M. J. Temperature dependence of oxygen-18 concentration in reef coral carbonates. J. Geophys. Res. 77, 463–473 (1972).
Patterson, W. P. & Walter, L. M. Syndepositional diagenesis of modern platform carbonates: Evidence from isotopic and minor element data. Geology 22, 127–130 (1994).
Hillis-Colinvaux, L. Ecology and taxonomy of Halimeda: primary producer of coral reefs. In Advances in Marine Biology 1–327 (Academic Press, New york, 1980).
Lee, D. & Carpenter, S. J. Isotopic disequilibrium in marine calcareous algae. Chem. Geol. 172, 307–329 (2001).
Wizemann, A., Meyer, F. W. & Westphal, H. A new model for the calcification of the green macro-alga Halimeda opuntia (Lamouroux). Coral Reefs 33, 951–964 (2014).
Holmes, C. W. delta 18 O variations in the Halimeda of Virgin Islands sands; evidence of cool water in the Northeast Caribbean, late Holocene. J. Sediment. Res. 53, 429–438 (1983).
Peach, K. E., Koch, M. S., Blackwelder, P. L., Guerrero-Given, D. & Kamasawa, N. Primary utricle structure of six Halimeda species and potential relevance for ocean acidification tolerance. Bot. Mar. 60, 1–11 (2017).
Peach, K. E., Koch, M. S., Blackwelder, P. L. & Manfrino, C. Calcification and photophysiology responses to elevated pCO2 in six Halimeda species from contrasting irradiance environments on Little Cayman Island reefs. J. Exp. Mar. Biol. Ecol. 486, 114–126 (2017).
Aharon, P. Recorders of reef environment histories: Stable isotopes in corals, giant clams, and calcareous algae. Coral Reefs 10, 71–90 (1991).
Wefer, G. & Berger, W. H. Isotope paleontology: growth and composition of extant calcareous species. Mar. Geol. 100, 207–248 (1991).
Wefer, G. & Killingley, J. S. Carbon isotopes in organic matter from a benthic alga Halimeda incrassata (Bermuda): Effects of light intensity. Chem. Geol. 59, 321–326 (1986).
McConnaughey, T. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim. Cosmochim. Acta 53, 151–162 (1989).
Mcconnaughey, T. 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim. Cosmochim. Acta 53, 163–171 (1989).
Robbins, L. L., Knorr, P. O. & Hallock, P. Response of Halimeda to ocean acidification: field and laboratory evidence. Biogeosci. Discuss. 6, 4895–4918 (2009).
Price, N., Hamilton, S., Tootell, J. & Smith, J. Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Mar. Ecol. Prog. Ser. 440, 67–78 (2011).
Sinutok, S., Hill, R., Doblin, M. A., Wuhrer, R. & Ralph, P. J. Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnol. Oceanogr. 56, 1200–1212 (2011).
Barry, S. C., Frazer, T. K. & Jacoby, C. A. Production and carbonate dynamics of Halimeda incrassata (Ellis) Lamouroux altered by Thalassia testudinum Banks and Soland ex König. J. Exp. Mar. Biol. Ecol. 444, 73–80 (2013).
Vogel, N. et al. Calcareous green alga Halimeda tolerates ocean acidification conditions at tropical carbon dioxide seeps: Halimeda growing at CO 2 seeps. Limnol. Oceanogr. 60, 263–275 (2015).
Campbell, J. E., Fisch, J., Langdon, C. & Paul, V. J. Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp). Coral Reefs 35, 357–368 (2016).
Peach, K., Koch, M. & Blackwelder, P. Effects of elevated pCO2 and irradiance on growth, photosynthesis and calcification in Halimeda discoidea. Mar. Ecol. Prog. Ser. 544, 143–158 (2016).
Prathep, A., Kaewsrikhaw, R., Mayakun, J. & Darakrai, A. The effects of light intensity and temperature on the calcification rate of Halimeda macroloba. J. Appl. Phycol. 30, 3405–3412 (2018).
Teichberg, M., Fricke, A. & Bischof, K. Increased physiological performance of the calcifying green macroalga Halimeda opuntia in response to experimental nutrient enrichment on a Caribbean coral reef. Aquat. Bot. 104, 25–33 (2013).
Duarte, C. M. et al. Stable Isotope (δ13C, δ15N, δ18O, δD) Composition and Nutrient Concentration of Red Sea Primary Producers. Front. Mar. Sci. 5, 298 (2018).
Leichter, J. J., Deane, G. B. & Stokes, M. D. Spatial and temporal variability of internal wave forcing on a coral reef. J. Phys. Oceanogr. 35, 1945–1962 (2005).
Leichter, J. J., Stewart, H. L. & Miller, S. L. Episodic nutrient transport to Florida coral reefs. Limnol. Oceanogr. 48, 1394–1407 (2003).
Leichter, J. J. et al. Nitrogen and oxygen isotopic signatures of subsurface nitrate seaward of the Florida Keys reef tract. Limnol. Oceanogr. 52, 1258–1267 (2007).
Leichter, J. J., Stokes, M. D., Vilchis, L. I. & Fiechter, J. Regional synchrony of temperature variation and internal wave forcing along the Florida Keys reef tract. J. Geophys. Res. Oceans 119, 548–558 (2014).
Davis, K. A., Leichter, J. J., Hench, J. L. & Monismith, S. G. Effects of western boundary current dynamics on the internal wave field of the Southeast Florida shelf. J. Geophys. Res. 113, C09010 (2008).
Leichter, J. J., Wing, S. R., Miller, S. L. & Denny, M. W. Pulsed delivery of subthermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limnol. Oceanogr. 41, 1490–1501 (1996).
Lee, T. N. et al. Influence of Florida current, gyres and wind-driven circulation on transport of larvae and recruitment in the Florida Keys coral reefs. Cont. Shelf Res. 12, 971–1002 (1992).
Lee, T. N., Schott, F. A. & Zantopp, R. Florida current: Low-frequency variability as observed with moored current meters during April 1982 to June 1983. Science 227, 298–302 (1985).
Lee, T. N. & Mayer, D. A. Low-frequency current variability and spin-off eddies along the shelf off southeast Florida. J. Mar. Res. 35, 193–220 (1987).
Boyer, J. N. & Jones, R. D. A view from the bridge: external and internal forces affecting the ambient water quality of the Florida Keys National Marine Sanctuary (FKNMS). In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook (eds Porter, J. W. & Porter, K. G.) 609–628 (CRC Press, Boca Raton, 2002).
Kruczynski, W. L. & McManus, F. Water quality concerns in the Florida Keys: Sources effects, and solutions. In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook (eds Porter, J. W. & Porter, K. G.) 827–881 (CRC Press, Boca Raton, 2002).
Schmidt, G.A. Global seawater oxygen-18 database. NASA GISShttp://data.giss.nasa.gov/o18data/ (1999).
Grossman, E. L. & Ku, T. L. Aragonite-water isotopic paleotemperature scale based on the benthic foraminifer Hoeglundina elegans. Geol. Soc. Am. Abstr. Prog. 13, 464 (1981).
Rose, K. A., Roth, B. M. & Smith, E. P. Skill assessment of spatial maps for oceanographic modeling. J. Mar. Syst. 76, 34–48 (2009).
Juillet-Leclerc, A. & Schmidt, G. A calibration of the oxygen isotope paleothermometer of coral aragonite from porites. Geophys. Res. Lett. 28, 4135–4138 (2001).
Böhm, F. et al. Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochim. Cosmochim. Acta 64, 1695–1703 (2000).
Brown, B. E. Coral bleaching: causes and consequences. Coral Reefs 16, S129–S138 (1997).
Knowlton, N. & Jackson, J. B. C. The ecology of coral reefs. In Marine Community Ecology (eds Bertness, M. D. et al.) 395–422 (Sinauer Associates Inc., Sunderland, 2001).
Wolanski, E. & Pickard, G. Upwelling by internal tides and kelvin waves at the continental shelf break on the Great Barrier Reef. Mar. Freshw. Res. 34, 65 (1983).
Wolanski, E. & Hamner, W. M. Topographically controlled fronts in the ocean and their biological influence. Science 241, 177–181 (1988).
Wolanski, E. & Delesalle, B. Upwelling by internal waves, Tahiti, French Polynesia. Cont. Shelf Res. 15, 357–368 (1995).
Wolanski, E. & Deleersnijder, E. Island-generated internal waves at Scott Reef Western Australia. Continent. Shelf Res. 18, 1649–1666 (1998).
Sandstrom, H. & Elliott, J. A. Internal tide and solitons on the Scotian Shelf: A nutrient pump at work. J. Geophys. Res. 89, 6415 (1984).
Holloway, P. E. Internal hydraulic jumps and solitons at a shelf break region on the Australian North West Shelf. J. Geophys. Res. 92, 5405 (1987).
Pineda, J. Predictable upwelling and the shoreward transport of planktonic larvae by internal tidal bores. Science 253, 548–549 (1991).
MacKinnon, J. A. & Gregg, M. C. Mixing on the late-summer New England shelf—Solibores, shear, and stratification. J. Phys. Oceanogr. 33, 1476–1492 (2003).
Smith, J. E., Smith, C. M., Vroom, P. S., Beach, K. L. & Miller, S. Nutrient and growth dynamics of Halimeda tuna on Conch Reef, Florida Keys: Possible influence of internal tides on nutrient status and physiology. Limnol. Oceanogr. 49, 1923–1936 (2004).
Bemis, B. E., Spero, H. J., Bijma, J. & Lea, D. W. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography 13, 150–160 (1998).
Bemis, B. E., Spero, H. J. & Thunell, R. C. Using species-specific paleotemperature equations with foraminifera: A case study in the Southern California Bight. Mar. Micropaleontol. 46, 405–430 (2002).
Wellington, G. M., Dunbar, R. B. & Merlen, G. Calibration of stable oxygen isotope signatures in Galápagos corals. Paleoceanography 11, 467–480 (1996).
Lloyd, R. M. Variations in the oxygen and carbon isotope ratios of florida bay mollusks and their environmental significance. J. Geol. 72, 84–111 (1964).
Swart, P. K. et al. The stable oxygen and carbon isotopic record from a coral growing in Florida Bay: A 160 year record of climatic and anthropogenic influence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 123, 219–237 (1996).
Corbett, D. R., Dillon, K., Burnett, W. & Chanton, J. Estimating the groundwater contribution into Florida Bay via natural tracers, 222 Rn and CH 4. Limnol. Oceanogr 45, 1546–1557 (2000).
Dillon, K. et al. Groundwater flow and phosphate dynamics surrounding a high discharge wastewater disposal well in the Florida Keys. J. Hydrol. 284, 193–210 (2003).
Paytan, A. et al. Submarine groundwater discharge: An important source of new inorganic nitrogen to coral reef ecosystems. Limnol. Oceanogr. 51, 343–348 (2006).
Gonzalez, L. A. & Lohmann, K. C. Carbon and oxygen isotopic composition of Holocene reefal carbonates. Geology 13, 811–841 (1985).
Shinn, E. Spur and groove formation on the Florida reef tract. J. Sediment. Res. 33, 291–303 (1963).
Multer, H. G., Gischler, E., Lundberg, J., Simmons, K. R. & Shinn, E. A. Key Largo limestone revisited: Pleistocene shelf-edge facies, Florida Keys, USA. Facies 46, 229–271 (2002).
Lidz, B. H., Reich, C. D., Peterson, R. L. & Shinn, E. A. New maps, new information: Coral reefs of the Florida keys. J. Coastal Res. 222, 260–282 (2006).
Deane, G. B. & Stokes, M. D. A robust single-cable sensor array for oceanographic use. IEEE J. Oceanic Eng. 27, 760–767 (2002).
Stokes, M. D., Leichter, J. J., Wing, S. & Frew, R. Temperature variability and algal isotopic heterogeneity on a Floridian coral reef. Mar. Ecol. 32, 364–379 (2011).
Epstein, S. & Mayeda, T. Variation of O18 content of waters from natural sources. Geochim. Cosmochim. Acta 4, 213–224 (1953).
Monserud, R. A. & Leemans, R. Comparing global vegetation maps with the Kappa statistic. Ecol. Model. 62, 275–293 (1992).
Pontius, R. Quantification error versus location error in comparison of categorical maps. Photogr. Eng. Remote Sens. 66, 1011–1016 (2000).
Hagen, A. Fuzzy set approach to assessing similarity of categorical maps. Int. J. Geogr. Inf. Sci. 17, 235–249 (2003).
Hagen-Zanker, A., Straatman, B. & Uljee, I. Further developments of a fuzzy set map comparison approach. Int. J. Geogr. Inf. Sci. 19, 769–785 (2005).
Hagen-Zanker, A. Map comparison methods that simultaneously address overlap and structure. J. Geograph. Syst. 8, 165–185 (2006).
Visser, H. & de Nijs, T. The map comparison kit. Environ. Modell. Softw. 21, 346–358 (2006).
Legendre, P. & Fortin, M. J. Spatial pattern and ecological analysis. Vegetatio 80, 107–138 (1989).
Fernandez, M. et al. Locality uncertainty and the differential performance of four common niche-based modelling techniques. Biodiv. Inf. 6, 2 (2009).
MATLAB. version 9.4.0 (R2018a). Natick, Massachusetts: The MathWorks Inc. (2018).
Fernandez, M. et al. Locality uncertainty and the differential performance of four common niche-based modeling techniques. Biodiv. Inf. 6, 2 (2009).
Source: Ecology - nature.com