in

Spatial variations in the stable isotope composition of the benthic algae, Halimeda tuna, and implications for paleothermometry

  • 1.

    Bathurst, R. G. C. Carbonate sediments and their diagenesis (Elsevier, Amsterdam, 1971).

    Google Scholar 

  • 2.

    Beach, K. et al. Variability in the ecophysiology of Halimeda spp. (Chlorphyta, Bryopsidales) on Conch Reef, Florida Keys, USA. J. Phycol. 39, 633–643 (2003).

    CAS  Article  Google Scholar 

  • 3.

    Vroom, P. S. et al. Field biology of Halimeda tuna (Bryopsidales, Chlorophyta) across a depth gradient: Comparative growth, survivorship, recruitment, and reproduction. Hydrobiologia 501, 149–166 (2003).

    Article  Google Scholar 

  • 4.

    Littler, M. M., Littler, D. S., Blair, S. M. & Norris, J. N. Deepest known plant life discovered on an uncharted seamount. Science 227, 57–59 (1985).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 5.

    Littler, M. M., Littler, D. S., Blair, S. M. & Norris, J. N. Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: Distribution, abundance, and primary productivity. Deep Sea Res. Part A Oceanogr. Res. Pap. 33, 881–892 (1986).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Blair, S. M. & Norris, J. N. The deep-water species of Halimeda Lamouroux (Halimedaceae, Chlorophyta) from San Salvador Island, Bahamas: Species composition, distribution and depth records. Coral Reefs 6, 227–236 (1988).

    ADS  Article  Google Scholar 

  • 7.

    Drew, E. A. & Abel, K. M. Studies on Halimeda: II. Reproduction, particularly the seasonality of gametangia formation, in a number of species from the Great Barrier Reef Province. Coral Reefs 6, 207–218 (1988).

    ADS  Article  Google Scholar 

  • 8.

    Johns, H. D. & Moore, C. H. Reef to basin sediment transport using Halimeda as a sediment tracer, Grand Cayman Island. West Indies. Coral Reefs 6, 187–193 (1988).

    ADS  Article  Google Scholar 

  • 9.

    Schupp, P. J. & Paul, V. J. Calcium carbonate and secondary metabolites in tropical seaweeds: Variable effects on herbivorous fishes. Ecology 75, 1172–1185 (1993).

    Article  Google Scholar 

  • 10.

    Littler, M. M. & Littler, D. S. Blade abandonment/proliferation: a novel mechanism for rapid epiphyte control in marine macrophytes. Ecology 80, 1736–1746 (1999).

    Article  Google Scholar 

  • 11.

    Wefer, G. Carbonate production by algae Halimeda, Penicillus and Padina. Nature 285, 323–324 (1980).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Wiman, S. K. & McKendree, W. G. Distribution of Halimeda plants and sediments on and around a patch reef near Old Rhodes Key Florida. J. Sediment. Res. 45, 415–421 (1975).

    Google Scholar 

  • 13.

    Mankiewicz, C. Occurrence and paleocologic significance of Halimeda in late Miocene reefs, southeastern Spain. Coral Reefs 6, 271–279 (1988).

    ADS  Article  Google Scholar 

  • 14.

    Hillis, L. W. The calcareous reef alga Halimeda (Chlorophyta, Byropsidales): A cretaceous genus that diversified in the cenozoic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 166, 89–100 (2001).

    Article  Google Scholar 

  • 15.

    Stanley, S. M. Effects of global seawater chemistry on biomineralization: Past, present, and future. Chem. Rev. 108, 4483–4498 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Wefer, G. & Berger, W. H. Stable isotope composition of benthic calcareous algae from Bermuda. J. Sediment. Res. 51, 459–465 (1981).

    CAS  Google Scholar 

  • 17.

    Flügel, E. Halimeda: paleontological record and palaeoenvironmental significance. Coral Reefs 6, 123–130 (1988).

    ADS  Article  Google Scholar 

  • 18.

    Rao, V. P. et al. Late quaternary Halimeda bioherms and aragonitic faecal pellet-dominated sediments on the carbonate platform of the western continental shelf of India. Mar. Geol. 121, 293–315 (1994).

    ADS  Article  Google Scholar 

  • 19.

    Stanley, S. M., Ries, J. B. & Hardie, L. A. Nonlinear partial differential equations and applications: From the Cover: Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition. Proc. Natl. Acad. Sci. 99, 15323–15326 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 20.

    Stanley, S. M. Influence of seawater chemistry on biomineralization throughout phanerozoic time: Paleontological and experimental evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 214–236 (2006).

    Article  Google Scholar 

  • 21.

    Brachert, T. C. et al. High salinity variability during the early Messinian revealed by stable isotope signatures from vermetid and Halimeda reefs of the Mediterranean region. Geol. Romana 40, 51–66 (2007).

    Google Scholar 

  • 22.

    Urey, H. C. The thermodynamic properties of isotopic substances. J. Chem. Soc. 31, 562–581 (1947).

    Article  Google Scholar 

  • 23.

    Urey, H. C., Lowenstam, H. A., Epstein, S. & McKINNEY, C. R. Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. Geol. Soc. Am. Bull. 62, 399 (1951).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Epstein, S., Buchsbaum, R., Lowenstam, H. & Urey, H. C. Carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull. 62, 417 (1951).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Revised carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull. 64, 1315 (1953).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Tabouret, H. et al. Simultaneous use of strontium: calcium and barium: calcium ratios in otoliths as markers of habitat: Application to the European eel (Anguilla anguilla) in the Adour basin South West France. Mar. Environ. Res. 70, 35–45 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Ren, L. et al. Deconvolving the δ18O seawater component from subseasonal coral δ18O and Sr/Ca at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 1997. Geochim. Cosmochim. Acta 67, 1609–1621 (2003).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Grossman, E. L. & Ku, T.-L. Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chem. Geol. 59, 59–74 (1986).

    CAS  Article  Google Scholar 

  • 29.

    Weber, J. N. & Woodhead, P. M. J. Temperature dependence of oxygen-18 concentration in reef coral carbonates. J. Geophys. Res. 77, 463–473 (1972).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Patterson, W. P. & Walter, L. M. Syndepositional diagenesis of modern platform carbonates: Evidence from isotopic and minor element data. Geology 22, 127–130 (1994).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Hillis-Colinvaux, L. Ecology and taxonomy of Halimeda: primary producer of coral reefs. In Advances in Marine Biology 1–327 (Academic Press, New york, 1980).

    Google Scholar 

  • 32.

    Lee, D. & Carpenter, S. J. Isotopic disequilibrium in marine calcareous algae. Chem. Geol. 172, 307–329 (2001).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Wizemann, A., Meyer, F. W. & Westphal, H. A new model for the calcification of the green macro-alga Halimeda opuntia (Lamouroux). Coral Reefs 33, 951–964 (2014).

    ADS  Article  Google Scholar 

  • 34.

    Holmes, C. W. delta 18 O variations in the Halimeda of Virgin Islands sands; evidence of cool water in the Northeast Caribbean, late Holocene. J. Sediment. Res. 53, 429–438 (1983).

    CAS  Google Scholar 

  • 35.

    Peach, K. E., Koch, M. S., Blackwelder, P. L., Guerrero-Given, D. & Kamasawa, N. Primary utricle structure of six Halimeda species and potential relevance for ocean acidification tolerance. Bot. Mar. 60, 1–11 (2017).

    Article  Google Scholar 

  • 36.

    Peach, K. E., Koch, M. S., Blackwelder, P. L. & Manfrino, C. Calcification and photophysiology responses to elevated pCO2 in six Halimeda species from contrasting irradiance environments on Little Cayman Island reefs. J. Exp. Mar. Biol. Ecol. 486, 114–126 (2017).

    CAS  Article  Google Scholar 

  • 37.

    Aharon, P. Recorders of reef environment histories: Stable isotopes in corals, giant clams, and calcareous algae. Coral Reefs 10, 71–90 (1991).

    ADS  Article  Google Scholar 

  • 38.

    Wefer, G. & Berger, W. H. Isotope paleontology: growth and composition of extant calcareous species. Mar. Geol. 100, 207–248 (1991).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Wefer, G. & Killingley, J. S. Carbon isotopes in organic matter from a benthic alga Halimeda incrassata (Bermuda): Effects of light intensity. Chem. Geol. 59, 321–326 (1986).

    CAS  Article  Google Scholar 

  • 40.

    McConnaughey, T. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim. Cosmochim. Acta 53, 151–162 (1989).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Mcconnaughey, T. 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim. Cosmochim. Acta 53, 163–171 (1989).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Robbins, L. L., Knorr, P. O. & Hallock, P. Response of Halimeda to ocean acidification: field and laboratory evidence. Biogeosci. Discuss. 6, 4895–4918 (2009).

    ADS  Article  Google Scholar 

  • 43.

    Price, N., Hamilton, S., Tootell, J. & Smith, J. Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Mar. Ecol. Prog. Ser. 440, 67–78 (2011).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Sinutok, S., Hill, R., Doblin, M. A., Wuhrer, R. & Ralph, P. J. Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnol. Oceanogr. 56, 1200–1212 (2011).

    ADS  CAS  Article  Google Scholar 

  • 45.

    Barry, S. C., Frazer, T. K. & Jacoby, C. A. Production and carbonate dynamics of Halimeda incrassata (Ellis) Lamouroux altered by Thalassia testudinum Banks and Soland ex König. J. Exp. Mar. Biol. Ecol. 444, 73–80 (2013).

    CAS  Article  Google Scholar 

  • 46.

    Vogel, N. et al. Calcareous green alga Halimeda tolerates ocean acidification conditions at tropical carbon dioxide seeps: Halimeda growing at CO 2 seeps. Limnol. Oceanogr. 60, 263–275 (2015).

    ADS  CAS  Article  Google Scholar 

  • 47.

    Campbell, J. E., Fisch, J., Langdon, C. & Paul, V. J. Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp). Coral Reefs 35, 357–368 (2016).

    ADS  Article  Google Scholar 

  • 48.

    Peach, K., Koch, M. & Blackwelder, P. Effects of elevated pCO2 and irradiance on growth, photosynthesis and calcification in Halimeda discoidea. Mar. Ecol. Prog. Ser. 544, 143–158 (2016).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Prathep, A., Kaewsrikhaw, R., Mayakun, J. & Darakrai, A. The effects of light intensity and temperature on the calcification rate of Halimeda macroloba. J. Appl. Phycol. 30, 3405–3412 (2018).

    CAS  Article  Google Scholar 

  • 50.

    Teichberg, M., Fricke, A. & Bischof, K. Increased physiological performance of the calcifying green macroalga Halimeda opuntia in response to experimental nutrient enrichment on a Caribbean coral reef. Aquat. Bot. 104, 25–33 (2013).

    CAS  Article  Google Scholar 

  • 51.

    Duarte, C. M. et al. Stable Isotope (δ13C, δ15N, δ18O, δD) Composition and Nutrient Concentration of Red Sea Primary Producers. Front. Mar. Sci. 5, 298 (2018).

    Article  Google Scholar 

  • 52.

    Leichter, J. J., Deane, G. B. & Stokes, M. D. Spatial and temporal variability of internal wave forcing on a coral reef. J. Phys. Oceanogr. 35, 1945–1962 (2005).

    ADS  Article  Google Scholar 

  • 53.

    Leichter, J. J., Stewart, H. L. & Miller, S. L. Episodic nutrient transport to Florida coral reefs. Limnol. Oceanogr. 48, 1394–1407 (2003).

    ADS  Article  Google Scholar 

  • 54.

    Leichter, J. J. et al. Nitrogen and oxygen isotopic signatures of subsurface nitrate seaward of the Florida Keys reef tract. Limnol. Oceanogr. 52, 1258–1267 (2007).

    ADS  CAS  Article  Google Scholar 

  • 55.

    Leichter, J. J., Stokes, M. D., Vilchis, L. I. & Fiechter, J. Regional synchrony of temperature variation and internal wave forcing along the Florida Keys reef tract. J. Geophys. Res. Oceans 119, 548–558 (2014).

    ADS  Article  Google Scholar 

  • 56.

    Davis, K. A., Leichter, J. J., Hench, J. L. & Monismith, S. G. Effects of western boundary current dynamics on the internal wave field of the Southeast Florida shelf. J. Geophys. Res. 113, C09010 (2008).

    ADS  Google Scholar 

  • 57.

    Leichter, J. J., Wing, S. R., Miller, S. L. & Denny, M. W. Pulsed delivery of subthermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limnol. Oceanogr. 41, 1490–1501 (1996).

    ADS  CAS  Article  Google Scholar 

  • 58.

    Lee, T. N. et al. Influence of Florida current, gyres and wind-driven circulation on transport of larvae and recruitment in the Florida Keys coral reefs. Cont. Shelf Res. 12, 971–1002 (1992).

    ADS  Article  Google Scholar 

  • 59.

    Lee, T. N., Schott, F. A. & Zantopp, R. Florida current: Low-frequency variability as observed with moored current meters during April 1982 to June 1983. Science 227, 298–302 (1985).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 60.

    Lee, T. N. & Mayer, D. A. Low-frequency current variability and spin-off eddies along the shelf off southeast Florida. J. Mar. Res. 35, 193–220 (1987).

    Google Scholar 

  • 61.

    Boyer, J. N. & Jones, R. D. A view from the bridge: external and internal forces affecting the ambient water quality of the Florida Keys National Marine Sanctuary (FKNMS). In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook (eds Porter, J. W. & Porter, K. G.) 609–628 (CRC Press, Boca Raton, 2002).

    Google Scholar 

  • 62.

    Kruczynski, W. L. & McManus, F. Water quality concerns in the Florida Keys: Sources effects, and solutions. In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook (eds Porter, J. W. & Porter, K. G.) 827–881 (CRC Press, Boca Raton, 2002).

    Google Scholar 

  • 63.

    Schmidt, G.A. Global seawater oxygen-18 database. NASA GISShttp://data.giss.nasa.gov/o18data/ (1999).

  • 64.

    Grossman, E. L. & Ku, T. L. Aragonite-water isotopic paleotemperature scale based on the benthic foraminifer Hoeglundina elegans. Geol. Soc. Am. Abstr. Prog. 13, 464 (1981).

    Google Scholar 

  • 65.

    Rose, K. A., Roth, B. M. & Smith, E. P. Skill assessment of spatial maps for oceanographic modeling. J. Mar. Syst. 76, 34–48 (2009).

    Article  Google Scholar 

  • 66.

    Juillet-Leclerc, A. & Schmidt, G. A calibration of the oxygen isotope paleothermometer of coral aragonite from porites. Geophys. Res. Lett. 28, 4135–4138 (2001).

    ADS  CAS  Article  Google Scholar 

  • 67.

    Böhm, F. et al. Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochim. Cosmochim. Acta 64, 1695–1703 (2000).

    ADS  Article  Google Scholar 

  • 68.

    Brown, B. E. Coral bleaching: causes and consequences. Coral Reefs 16, S129–S138 (1997).

    Article  Google Scholar 

  • 69.

    Knowlton, N. & Jackson, J. B. C. The ecology of coral reefs. In Marine Community Ecology (eds Bertness, M. D. et al.) 395–422 (Sinauer Associates Inc., Sunderland, 2001).

    Google Scholar 

  • 70.

    Wolanski, E. & Pickard, G. Upwelling by internal tides and kelvin waves at the continental shelf break on the Great Barrier Reef. Mar. Freshw. Res. 34, 65 (1983).

    Article  Google Scholar 

  • 71.

    Wolanski, E. & Hamner, W. M. Topographically controlled fronts in the ocean and their biological influence. Science 241, 177–181 (1988).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 72.

    Wolanski, E. & Delesalle, B. Upwelling by internal waves, Tahiti, French Polynesia. Cont. Shelf Res. 15, 357–368 (1995).

    ADS  Article  Google Scholar 

  • 73.

    Wolanski, E. & Deleersnijder, E. Island-generated internal waves at Scott Reef Western Australia. Continent. Shelf Res. 18, 1649–1666 (1998).

    ADS  Article  Google Scholar 

  • 74.

    Sandstrom, H. & Elliott, J. A. Internal tide and solitons on the Scotian Shelf: A nutrient pump at work. J. Geophys. Res. 89, 6415 (1984).

    ADS  Article  Google Scholar 

  • 75.

    Holloway, P. E. Internal hydraulic jumps and solitons at a shelf break region on the Australian North West Shelf. J. Geophys. Res. 92, 5405 (1987).

    ADS  Article  Google Scholar 

  • 76.

    Pineda, J. Predictable upwelling and the shoreward transport of planktonic larvae by internal tidal bores. Science 253, 548–549 (1991).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 77.

    MacKinnon, J. A. & Gregg, M. C. Mixing on the late-summer New England shelf—Solibores, shear, and stratification. J. Phys. Oceanogr. 33, 1476–1492 (2003).

    ADS  Article  Google Scholar 

  • 78.

    Smith, J. E., Smith, C. M., Vroom, P. S., Beach, K. L. & Miller, S. Nutrient and growth dynamics of Halimeda tuna on Conch Reef, Florida Keys: Possible influence of internal tides on nutrient status and physiology. Limnol. Oceanogr. 49, 1923–1936 (2004).

    ADS  Article  Google Scholar 

  • 79.

    Bemis, B. E., Spero, H. J., Bijma, J. & Lea, D. W. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography 13, 150–160 (1998).

    ADS  Article  Google Scholar 

  • 80.

    Bemis, B. E., Spero, H. J. & Thunell, R. C. Using species-specific paleotemperature equations with foraminifera: A case study in the Southern California Bight. Mar. Micropaleontol. 46, 405–430 (2002).

    ADS  Article  Google Scholar 

  • 81.

    Wellington, G. M., Dunbar, R. B. & Merlen, G. Calibration of stable oxygen isotope signatures in Galápagos corals. Paleoceanography 11, 467–480 (1996).

    ADS  Article  Google Scholar 

  • 82.

    Lloyd, R. M. Variations in the oxygen and carbon isotope ratios of florida bay mollusks and their environmental significance. J. Geol. 72, 84–111 (1964).

    ADS  CAS  Article  Google Scholar 

  • 83.

    Swart, P. K. et al. The stable oxygen and carbon isotopic record from a coral growing in Florida Bay: A 160 year record of climatic and anthropogenic influence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 123, 219–237 (1996).

    Article  Google Scholar 

  • 84.

    Corbett, D. R., Dillon, K., Burnett, W. & Chanton, J. Estimating the groundwater contribution into Florida Bay via natural tracers, 222 Rn and CH 4. Limnol. Oceanogr 45, 1546–1557 (2000).

    ADS  CAS  Article  Google Scholar 

  • 85.

    Dillon, K. et al. Groundwater flow and phosphate dynamics surrounding a high discharge wastewater disposal well in the Florida Keys. J. Hydrol. 284, 193–210 (2003).

    ADS  CAS  Article  Google Scholar 

  • 86.

    Paytan, A. et al. Submarine groundwater discharge: An important source of new inorganic nitrogen to coral reef ecosystems. Limnol. Oceanogr. 51, 343–348 (2006).

    ADS  CAS  Article  Google Scholar 

  • 87.

    Gonzalez, L. A. & Lohmann, K. C. Carbon and oxygen isotopic composition of Holocene reefal carbonates. Geology 13, 811–841 (1985).

    ADS  CAS  Article  Google Scholar 

  • 88.

    Shinn, E. Spur and groove formation on the Florida reef tract. J. Sediment. Res. 33, 291–303 (1963).

    Google Scholar 

  • 89.

    Multer, H. G., Gischler, E., Lundberg, J., Simmons, K. R. & Shinn, E. A. Key Largo limestone revisited: Pleistocene shelf-edge facies, Florida Keys, USA. Facies 46, 229–271 (2002).

    Article  Google Scholar 

  • 90.

    Lidz, B. H., Reich, C. D., Peterson, R. L. & Shinn, E. A. New maps, new information: Coral reefs of the Florida keys. J. Coastal Res. 222, 260–282 (2006).

    Article  Google Scholar 

  • 91.

    Deane, G. B. & Stokes, M. D. A robust single-cable sensor array for oceanographic use. IEEE J. Oceanic Eng. 27, 760–767 (2002).

    ADS  Article  Google Scholar 

  • 92.

    Stokes, M. D., Leichter, J. J., Wing, S. & Frew, R. Temperature variability and algal isotopic heterogeneity on a Floridian coral reef. Mar. Ecol. 32, 364–379 (2011).

    ADS  CAS  Article  Google Scholar 

  • 93.

    Epstein, S. & Mayeda, T. Variation of O18 content of waters from natural sources. Geochim. Cosmochim. Acta 4, 213–224 (1953).

    ADS  CAS  Article  Google Scholar 

  • 94.

    Monserud, R. A. & Leemans, R. Comparing global vegetation maps with the Kappa statistic. Ecol. Model. 62, 275–293 (1992).

    Article  Google Scholar 

  • 95.

    Pontius, R. Quantification error versus location error in comparison of categorical maps. Photogr. Eng. Remote Sens. 66, 1011–1016 (2000).

    Google Scholar 

  • 96.

    Hagen, A. Fuzzy set approach to assessing similarity of categorical maps. Int. J. Geogr. Inf. Sci. 17, 235–249 (2003).

    Article  Google Scholar 

  • 97.

    Hagen-Zanker, A., Straatman, B. & Uljee, I. Further developments of a fuzzy set map comparison approach. Int. J. Geogr. Inf. Sci. 19, 769–785 (2005).

    Article  Google Scholar 

  • 98.

    Hagen-Zanker, A. Map comparison methods that simultaneously address overlap and structure. J. Geograph. Syst. 8, 165–185 (2006).

    ADS  Article  Google Scholar 

  • 99.

    Visser, H. & de Nijs, T. The map comparison kit. Environ. Modell. Softw. 21, 346–358 (2006).

    Article  Google Scholar 

  • 100.

    Legendre, P. & Fortin, M. J. Spatial pattern and ecological analysis. Vegetatio 80, 107–138 (1989).

    Article  Google Scholar 

  • 101.

    Fernandez, M. et al. Locality uncertainty and the differential performance of four common niche-based modelling techniques. Biodiv. Inf. 6, 2 (2009).

    Article  Google Scholar 

  • 102.

    MATLAB. version 9.4.0 (R2018a). Natick, Massachusetts: The MathWorks Inc. (2018).

  • 103.

    Fernandez, M. et al. Locality uncertainty and the differential performance of four common niche-based modeling techniques. Biodiv. Inf. 6, 2 (2009).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Spatial–temporal dynamics and driving factor analysis of urban ecological land in Zhuhai city, China

    Revamped MIT Climate Portal aims to inform and empower the public