in

Species better track climate warming in the oceans than on land

  • 1.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

  • 2.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

  • 3.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    • Google Scholar
  • 4.

    Lenoir, J. & Svenning, J.-C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    • Google Scholar
  • 5.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

  • 6.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

  • 7.

    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

  • 8.

    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

  • 9.

    Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).

  • 10.

    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2, 121–124 (2012).

    • Google Scholar
  • 11.

    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

  • 12.

    Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Annu. Rev. Mar. Sci. 12, 153–179 (2020).

    • Google Scholar
  • 13.

    Comte, L. et al. BioShifts: a global geo-database of climate-induced species redistribution over land and sea. Figshare https://doi.org/10.6084/m9.figshare.7413365.v1 (2020).

  • 14.

    Brown, C. J. et al. Ecological and methodological drivers of species’ distribution and phenology responses to climate change. Glob. Change Biol. 22, 1548–1560 (2016).

    • Google Scholar
  • 15.

    Feeley, K. J., Stroud, J. T. & Perez, T. M. Most ‘global’ reviews of species’ responses to climate change are not truly global. Divers. Distrib. 23, 231–234 (2017).

    • Google Scholar
  • 16.

    Friedman, A. R., Hwang, Y.-T., Chiang, J. C. H. & Frierson, D. M. W. Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Clim. 26, 5419–5433 (2013).

    • Google Scholar
  • 17.

    Rumpf, S. B., Hülber, K., Zimmermann, N. E. & Dullinger, S. Elevational rear edges shifted at least as much as leading edges over the last century. Glob. Ecol. Biogeogr. 28, 533–543 (2019).

    • Google Scholar
  • 18.

    Freeman, B. G., Lee‐Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).

    • Google Scholar
  • 19.

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

  • 20.

    Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

  • 21.

    Paaijmans, K. P. et al. Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. 19, 2373–2380 (2013).

    • Google Scholar
  • 22.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    • Google Scholar
  • 23.

    Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).

    • PubMed
    • Google Scholar
  • 24.

    Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).

  • 25.

    Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016).

  • 26.

    Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).

  • 27.

    Engelhard, G. H., Righton, D. A. & Pinnegar, J. K. Climate change and fishing: a century of shifting distribution in North Sea cod. Glob. Change Biol. 20, 2473–2483 (2014).

    • Google Scholar
  • 28.

    Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132 (2017).

  • 29.

    Kjesbu, O. S. et al. Synergies between climate and management for Atlantic cod fisheries at high latitudes. Proc. Natl Acad. Sci. USA 111, 3478–3483 (2014).

  • 30.

    Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).

  • 31.

    Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).

  • 32.

    Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).

    • Google Scholar
  • 33.

    HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts? Ann. NY Acad. Sci. 1297, 112–125 (2013).

    • PubMed
    • Google Scholar
  • 34.

    Lenoir, J. et al. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob. Change Biol. 19, 1470–1481 (2013).

    • Google Scholar
  • 35.

    Graae, B. J. et al. Stay or go—how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).

    • Google Scholar
  • 36.

    Vergés, A. et al. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B Biol. Sci. 281, 20140846 (2014).

    • Google Scholar
  • 37.

    Vergés, A. et al. Tropicalisation of temperate reefs: implications for ecosystem functions and management actions. Funct. Ecol. 33, 1000–1013 (2019).

    • Google Scholar
  • 38.

    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).

    • PubMed
    • Google Scholar
  • 39.

    Kattge, J. et al. TRY—a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    • Google Scholar
  • 40.

    Kissling, W. D. et al. Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide. Ecol. Evol. 4, 2913–2930 (2014).

  • 41.

    Meiri, S. Traits of lizards of the world: variation around a successful evolutionary design. Glob. Ecol. Biogeogr. 27, 1168–1172 (2018).

    • Google Scholar
  • 42.

    Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).

  • 43.

    Frimpong, E. A. & Angermeier, P. L. Fish Traits: a database of ecological and life-history traits of freshwater fishes of the United States. Fisheries 34, 487–495 (2009).

    • Google Scholar
  • 44.

    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

    • Google Scholar
  • 45.

    Agnihotri, P. et al. Climate change-driven shifts in elevation and ecophysiological traits of Himalayan plants during the past century. Curr. Sci. 112, 595 (2017).

    • CAS
    • Google Scholar
  • 46.

    Aguirre-Gutiérrez, J., Kissling, W. D. & Carvalheiro, L. G. Functional traits help to explain half-century long shifts in pollinator distributions. Sci. Rep. 6, 24451 (2016).

  • 47.

    Akatov, P. V. Changes in the upper limits of tree species distribution in the Western Caucasus (Belaya River basin) related to recent climate warming. Russ. J. Ecol. 40, 33–38 (2009).

    • Google Scholar
  • 48.

    Alofs, K. M., Jackson, D. A. & Lester, N. P. Ontario freshwater fishes demonstrate differing range-boundary shifts in a warming climate. Divers. Distrib. 20, 123–136 (2014).

    • Google Scholar
  • 49.

    Amano, T. et al. Links between plant species’ spatial and temporal responses to a warming climate. Proc. R. Soc. Lond. B Biol. Sci. 281, 20133017 (2014).

    • Google Scholar
  • 50.

    Ambrosini, R. et al. Climate change and the long-term northward shift in the African wintering range of the barn swallow Hirundo rustica. Clim. Res. 49, 131–141 (2011).

    • Google Scholar
  • 51.

    Angelo, C. L. & Daehler, C. C. Upward expansion of fire-adapted grasses along a warming tropical elevation gradient. Ecography 36, 551–559 (2013).

    • Google Scholar
  • 52.

    Archaux, F. Breeding upwards when climate is becoming warmer: no bird response in the French Alps. Ibis 146, 138–144 (2004).

    • Google Scholar
  • 53.

    Ash, J. D., Givnish, T. J. & Waller, D. M. Tracking lags in historical plant species’ shifts in relation to regional climate change. Glob. Change Biol. 23, 1305–1315 (2017).

    • Google Scholar
  • 54.

    Asher, J., Fox, R. & Warren, M. S. British butterfly distributions and the 2010 target. J. Insect Conserv. 15, 291–299 (2011).

    • Google Scholar
  • 55.

    Assandri, G. & Morganti, M. Is the spectacled warbler Sylvia conspicillata expanding northward because of climate warming? Bird Study 62, 126–131 (2015).

    • Google Scholar
  • 56.

    Auer, S. K. & King, D. I. Ecological and life-history traits explain recent boundary shifts in elevation and latitude of western North American songbirds. Glob. Ecol. Biogeogr. 23, 867–875 (2014).

    • Google Scholar
  • 57.

    Bässler, C., Hothorn, T., Brandl, R. & Müller, J. Insects overshoot the expected upslope shift caused by climate warming. PLoS ONE 8, e65842 (2013).

  • 58.

    Batdorf, K. E. Distributional Changes in Ohio’s Breeding Birds and the Importance of Climate and Land Cover Change. MSc thesis, Ohio State Univ. (2012).

  • 59.

    Battisti, A. et al. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 15, 2084–2096 (2005).

    • Google Scholar
  • 60.

    Baur, B. & Baur, A. Snails keep the pace: shift in upper elevation limit on mountain slopes as a response to climate warming. Can. J. Zool. 91, 596–599 (2013).

    • Google Scholar
  • 61.

    Beaugrand, G., Luczak, C. & Edwards, M. Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob. Change Biol. 15, 1790–1803 (2009).

    • Google Scholar
  • 62.

    Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).

    • Google Scholar
  • 63.

    Beever, E. A., Ray, C., Wilkening, J. L., Brussard, P. F. & Mote, P. W. Contemporary climate change alters the pace and drivers of extinction. Glob. Change Biol. 17, 2054–2070 (2011).

    • Google Scholar
  • 64.

    Bergamini, A., Ungricht, S. & Hofmann, H. An elevational shift of cryophilous bryophytes in the last century—an effect of climate warming? Divers. Distrib. 15, 871–879 (2009).

    • Google Scholar
  • 65.

    Berke, S. K. et al. Range shifts and species diversity in marine ecosystem engineers: patterns and predictions for European sedimentary habitats. Glob. Ecol. Biogeogr. 19, 223–232 (2010).

    • Google Scholar
  • 66.

    Betzholtz, P., Pettersson, L. B., Ryrholm, N. & Franzen, M. With that diet, you will go far: trait-based analysis reveals a link between rapid range expansion and a nitrogen-favoured diet. Proc. R. Soc. B Biol. Sci. 280, 20122305 (2012).

    • Google Scholar
  • 67.

    Bhatta, K. P., Grytnes, J.-A. & Vetaas, O. R. Downhill shift of alpine plant assemblages under contemporary climate and land-use changes. Ecosphere 9, e02084 (2018).

    • Google Scholar
  • 68.

    Biella, P. et al. Distribution patterns of the cold adapted bumblebee Bombus alpinus in the Alps and hints of an uphill shift (Insecta: Hymenoptera: Apidae). J. Insect Conserv. 21, 357–366 (2017).

    • Google Scholar
  • 69.

    Bodin, J. et al. Shifts of forest species along an elevational gradient in Southeast France: climate change or stand maturation? J. Veg. Sci. 24, 269–283 (2013).

    • Google Scholar
  • 70.

    Boisvert-Marsh, L., Périé, C. & de Blois, S. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5, art83 (2014).

    • Google Scholar
  • 71.

    Botts, E. A., Erasmus, B. F. N. & Alexander, G. J. Observed range dynamics of South African amphibians under conditions of global change. Austral Ecol. 40, 309–317 (2015).

    • Google Scholar
  • 72.

    Botts, E. A. Distribution Change in South African Frogs. PhD thesis, Univ. Witwatersrand (2012).

  • 73.

    Bowman, J., Holloway, G. L., Malcolm, J. R., Middel, K. R. & Wilson, P. J. Northern range boundary dynamics of southern flying squirrels: evidence of an energetic bottleneck. Can. J. Zool. 83, 1486–1494 (2005).

    • Google Scholar
  • 74.

    Brommer, J. E. The range margins of northern birds shift polewards. Ann. Zool. Fenn. 41, 391–397 (2004).

    • Google Scholar
  • 75.

    Brommer, J. E., Lehikoinen, A. & Valkama, J. The breeding ranges of central European and Arctic bird species move poleward. PLoS ONE 7, e43648 (2012).

  • 76.

    Brusca, R. C. et al. Dramatic response to climate change in the Southwest: Robert Whittaker’s 1963 Arizona Mountain plant transect revisited. Ecol. Evol. 3, 3307–3319 (2013).

  • 77.

    Bulgarella, M., Trewick, S. A., Minards, N. A., Jacobson, M. J. & Morgan-Richards, M. Shifting ranges of two tree weta species (Hemideina spp.): competitive exclusion and changing climate. J. Biogeogr. 41, 524–535 (2014).

    • Google Scholar
  • 78.

    Büntgen, U. et al. Elevational range shifts in four mountain ungulate species from the Swiss Alps. Ecosphere 8, e01761 (2017).

    • Google Scholar
  • 79.

    Campos-Cerqueira, M. & Aide, T. M. Lowland extirpation of anuran populations on a tropical mountain. PeerJ 5, e4059 (2017).

  • 80.

    Campos-Cerqueira, M., Arendt, W. J., Wunderle, J. M. & Aide, T. M. Have bird distributions shifted along an elevational gradient on a tropical mountain? Ecol. Evol. 7, 9914–9924 (2017).

  • 81.

    Cannone, N. & Pignatti, S. Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Clim. Change 123, 201–214 (2014).

    • Google Scholar
  • 82.

    Chen, I.-C. et al. Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Glob. Ecol. Biogeogr. 20, 34–45 (2011).

    • Google Scholar
  • 83.

    Chen, I. et al. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc. Natl Acad. Sci. USA 106, 1479–1483 (2009).

  • 84.

    Chivers, W. J., Walne, A. W. & Hays, G. C. Mismatch between marine plankton range movements and the velocity of climate change. Nat. Commun. 8, 14434 (2017).

  • 85.

    Chust, G. et al. Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach. ICES J. Mar. Sci. 71, 241–253 (2014).

    • Google Scholar
  • 86.

    Coals, P., Shmida, A., Vasl, A., Duguny, N. M. & Gilbert, F. Elevation patterns of plant diversity and recent altitudinal range shifts in Sinai’s high-mountain flora. J. Veg. Sci. 29, 255–264 (2018).

    • Google Scholar
  • 87.

    Comte, L. & Grenouillet, G. Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography 36, 1236–1246 (2013).

    • Google Scholar
  • 88.

    Coristine, L. E. & Kerr, J. T. Temperature-related geographical shifts among passerines: contrasting processes along poleward and equatorward range margins. Ecol. Evol. 5, 5162–5176 (2015).

  • 89.

    Courtin, F. et al. Updating the northern tsetse limit in Burkina Faso (1949–2009): impact of global change. Int. J. Environ. Res. Public. Health 7, 1708–1719 (2010).

  • 90.

    Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327 (2011).

  • 91.

    Crozier, L. Winter warming facilitates range expansion: cold tolerance of the butterfly Atalopedes campestris. Oecologia 135, 648–656 (2003).

    • PubMed
    • Google Scholar
  • 92.

    Cubillos, J. et al. Calcification morphotypes of the coccolithophorid Emiliania huxleyi in the Southern Ocean: changes in 2001 to 2006 compared to historical data. Mar. Ecol. Prog. Ser. 348, 47–54 (2007).

    • Google Scholar
  • 93.

    Currie, D. J. & Venne, S. Climate change is not a major driver of shifts in the geographical distributions of North American birds. Glob. Ecol. Biogeogr. 26, 333–346 (2017).

    • Google Scholar
  • 94.

    Czortek, P. et al. Climate change, tourism and historical grazing influence the distribution of Carex lachenalii Schkuhr—a rare arctic-alpine species in the Tatra Mts. Sci. Total Environ. 618, 1628–1637 (2018).

  • 95.

    Dainese, M. et al. Human disturbance and upward expansion of plants in a warming climate. Nat. Clim. Change 7, 577–580 (2017).

    • Google Scholar
  • 96.

    Danby, R. K. & Hik, D. S. Evidence of recent treeline dynamics in southwest Yukon from aerial photographs. Arctic 60, 411–420 (2007).

    • Google Scholar
  • 97.

    Dawson, M. N., Grosberg, R. K., Stuart, Y. E. & Sanford, E. Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle Tetraclita rubescens. Mol. Ecol. 19, 1585–1605 (2010).

  • 98.

    Delava, E., Allemand, R., Léger, L., Fleury, F. & Gibert, P. The rapid northward shift of the range margin of a Mediterranean parasitoid insect (Hymenoptera) associated with regional climate warming. J. Biogeogr. 41, 1379–1389 (2014).

    • Google Scholar
  • 99.

    DeLuca, W. V. Ecology and Conservation of the Montane Forest Avian Community in Northeastern North America. PhD thesis, Univ. Massachusetts (2013).

  • 100.

    DeLuca, W. V. & King, D. I. Montane birds shift downslope despite recent warming in the northern Appalachian Mountains. J. Ornithol. 158, 493–505 (2017).

    • Google Scholar
  • 101.

    Dieker, P., Drees, C. & Assmann, T. Two high-mountain burnet moth species (Lepidoptera, Zygaenidae) react differently to the global change drivers climate and land-use. Biol. Conserv. 144, 2810–2818 (2011).

    • Google Scholar
  • 102.

    Dobbertin, M. et al. The upward shift in altitude of pine mistletoe (Viscum album ssp. austriacum) in Switzerland—the result of climate warming? Int. J. Biometeorol. 50, 40–47 (2005).

    • PubMed
    • Google Scholar
  • 103.

    Dolezal, J. et al. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6, 24881 (2016).

  • 104.

    Dou, H., Jiang, G., Stott, P. & Piao, R. Climate change impacts population dynamics and distribution shift of moose (Alces alces) in Heilongjiang Province of China. Ecol. Res. 628, 625–632 (2013).

    • Google Scholar
  • 105.

    Duarte, L. et al. Recent and historical range shifts of two canopy-forming seaweeds in north Spain and the link with trends in sea surface temperature. Acta Oecologica 51, 1–10 (2013).

    • Google Scholar
  • 106.

    Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).

    • Google Scholar
  • 107.

    Dumais, C., Ropars, P., Denis, M., Dufour-Tremblay, G. & Boudreau, S. Are low altitude alpine tundra ecosystems under threat? A case study from the Parc National de la Gaspésie, Québec. Environ. Res. Lett. 9, 094001 (2014).

    • Google Scholar
  • 108.

    Engelhard, G. H., Pinnegar, J. K., Kell, L. T. & Rijnsdorp, A. D. Nine decades of North Sea sole and plaice distribution. ICES J. Mar. Sci. 68, 1090–1104 (2011).

    • Google Scholar
  • 109.

    Eskildsen, A. et al. Testing species distribution models across space and time: high latitude butterflies and recent warming. Glob. Ecol. Biogeogr. 22, 1293–1303 (2013).

    • Google Scholar
  • 110.

    Feeley, K. J. et al. Upslope migration of Andean trees. J. Biogeogr. 38, 783–791 (2011).

    • Google Scholar
  • 111.

    Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017).

  • 112.

    Felde, V. A., Kapfer, J. & Grytnes, J. Upward shift in elevational plant species ranges in Sikkilsdalen, central Norway. Ecography 35, 922–932 (2012).

    • Google Scholar
  • 113.

    Fenberg, P. B. & Rivadeneira, M. M. Range limits and geographic patterns of abundance of the rocky intertidal owl limpet, Lottia gigantea. J. Biogeogr. 38, 2286–2298 (2011).

    • Google Scholar
  • 114.

    Flousek, J., Telenský, T., Hanzelka, J. & Reif, J. Population trends of central European montane birds provide evidence for adverse impacts of climate change on high-altitude species. PLoS ONE 10, e0139465 (2015).

  • 115.

    Forero-Medina, G., Terborgh, J., Socolar, S. J. & Pimm, S. L. Elevational ranges of birds on a tropical montane gradient lag behind warming temperatures. PLoS ONE 6, e28535 (2011).

  • 116.

    Forsman, A., Betzholtz, P. & Franzén, M. Faster poleward range shifts in moths with more variable colour patterns. Sci. Rep. 6, 36265 (2016).

  • 117.

    Fox, R. et al. Moths count: recording moths for conservation in the UK. J. Insect Conserv. 15, 55–68 (2011).

    • Google Scholar
  • 118.

    Franco, A. M. A. et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Change Biol. 12, 1545–1553 (2006).

    • Google Scholar
  • 119.

    Freeman, B. G. & Freeman, A. M. C. Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming. Proc. Natl Acad. Sci. USA 111, 4490–4494 (2014).

  • 120.

    Frei, E., Bodin, J. & Walther, G.-R. Plant species’ range shifts in mountainous areas—all uphill from here? Bot. Helv. 120, 117–128 (2010).

    • Google Scholar
  • 121.

    Gamache, I. & Payette, S. Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. J. Biogeogr. 32, 849–862 (2005).

    • Google Scholar
  • 122.

    Gonzalez, P. Desertification and a shift of forest species in the West African Sahel. Clim. Res. 17, 217–228 (2001).

    • CAS
    • Google Scholar
  • 123.

    Greenlee, E. S. The Effects of a Warming Climate on the Migratory Strategies of a Putatively Non-migratory Bird, the Gray Jay (Perisoreus canadensis). PhD thesis, Ohio State Univ. (2012).

  • 124.

    Greenwood, S., Chen, J.-C., Chen, C.-T. & Jump, A. S. Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region. Glob. Change Biol. 20, 3756–3766 (2014).

    • Google Scholar
  • 125.

    Grewe, Y., Hof, C., Dehling, D. M., Brandl, R. & Brändle, M. Recent range shifts of European dragonflies provide support for an inverse relationship between habitat predictability and dispersal. Glob. Ecol. Biogeogr. 22, 403–409 (2013).

    • Google Scholar
  • 126.

    Groom, Q. J. Some poleward movement of British native vascular plants is occurring, but the fingerprint of climate change is not evident. PeerJ 1, e77 (2013).

  • 127.

    Hale, S. S., Buffum, H. W., Kiddon, J. A. & Hughes, M. M. Subtidal benthic invertebrates shifting northward along the US Atlantic Coast. Estuar. Coasts 40, 1744–1756 (2017).

    • Google Scholar
  • 128.

    Hargrove, L. J. Limits to Species’ Distributions: Spatial Structure and Dynamics of Breeding Bird Populations Along an Ecological Gradient. PhD thesis, Univ. California Riverside (2010).

  • 129.

    Harris, J. B. C. et al. Using diverse data sources to detect elevational range changes of birds on Mount Kinabalu, Malaysian Borneo. Raffles Bull. Zool. 25, 197–247 (2012).

    • Google Scholar
  • 130.

    Hassall, C. Odonata as candidate macroecological barometers for global climate change. Freshw. Sci. 34, 1040–1049 (2015).

    • Google Scholar
  • 131.

    Hermes, C., Jansen, J. & Schaefer, H. M. Habitat requirements and population estimate of the endangered Ecuadorian Tapaculo Scytalopus robbinsi. Bird Conserv. Int. 28, 302–318 (2018).

    • Google Scholar
  • 132.

    Hernández, L., Cañellas, I., Alberdi, I., Torres, I. & Montes, F. Assessing changes in species distribution from sequential large-scale forest inventories. Ann. Sci. 71, 161–171 (2014).

    • Google Scholar
  • 133.

    Hernández, L. et al. Exploring range shifts of contrasting tree species across a bioclimatic transition zone. Eur. J. Res. 136, 481–492 (2017).

    • Google Scholar
  • 134.

    Hersteinsson, P. & Macdonald, D. W. Interspecific competition and the geographical distribution of red and artic foxes Vulpes vulpes and Alopex lagopus. Oikos 64, 505–515 (1992).

    • Google Scholar
  • 135.

    Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Glob. Change Biol. 11, 502–506 (2005).

    • Google Scholar
  • 136.

    Hiddink, J. G., Burrows, M. T. & García Molinos, J. Temperature tracking by North Sea benthic invertebrates in response to climate change. Glob. Change Biol. 21, 117–129 (2015).

    • Google Scholar
  • 137.

    Hill, N. J., Tobin, A. J., Reside, A. E., Pepperell, J. G. & Bridge, T. C. L. Dynamic habitat suitability modelling reveals rapid poleward distribution shift in a mobile apex predator. Glob. Change Biol. 22, 1086–1096 (2016).

    • Google Scholar
  • 138.

    Hitch, A. T. & Leberg, P. L. Breeding distributions of North American bird species moving north as a result of climate change. Conserv. Biol. 21, 534–539 (2007).

    • PubMed
    • Google Scholar
  • 139.

    Hofgaard, A., Tømmervik, H., Rees, G. & Hanssen, F. Latitudinal forest advance in northernmost Norway since the early 20th century. J. Biogeogr. 40, 938–949 (2013).

    • Google Scholar
  • 140.

    Holzinger, B., Hülber, K., Camenisch, M. & Grabherr, G. Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol. 195, 179–196 (2008).

    • Google Scholar
  • 141.

    Hovick, T. J. et al. Informing conservation by identifying range shift patterns across breeding habitats and migration strategies. Biodivers. Conserv. 25, 345–356 (2016).

    • Google Scholar
  • 142.

    Hsieh, C.-H., Kim, H. J., Watson, W., Di Lorenzo, E. & Sugihara, G. Climate-driven changes in abundance and distribution of larvae of oceanic fishes in the southern California region. Glob. Change Biol. 15, 2137–2152 (2009).

    • Google Scholar
  • 143.

    Hsieh, C., Reiss, C. S., Hewitt, R. P. & Sugihara, G. Spatial analysis shows that fishing enhances the climatic sensitivity of marine fishes. Can. J. Fish. Aquat. Sci. 65, 947–961 (2008).

    • Google Scholar
  • 144.

    Huang, Q., Sauer, J. R. & Dubayah, R. O. Multidirectional abundance shifts among North American birds and the relative influence of multifaceted climate factors. Glob. Change Biol. 23, 3610–3622 (2017).

    • Google Scholar
  • 145.

    Jepsen, J. U., Hagen, S. B., Ims, R. A. & Yoccoz, N. G. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J. Anim. Ecol. 77, 257–264 (2008).

    • PubMed
    • Google Scholar
  • 146.

    Jiménez-Alfaro, B., Gavilán, R. G., Escudero, A., Iriondo, J. M. & Fernández-González, F. Decline of dry grassland specialists in Mediterranean high-mountain communities influenced by recent climate warming. J. Veg. Sci. 25, 1394–1404 (2014).

    • Google Scholar
  • 147.

    Jones, S. J., Lima, F. P. & Wethey, D. S. Rising environmental temperatures and biogeography: poleward range contraction of the blue mussel, Mytilus edulis L., in the western Atlantic. J. Biogeogr. 37, 2243–2259 (2010).

    • Google Scholar
  • 148.

    Jones, S. J., Southward, A. J. & Wethey, D. S. Climate change and historical biogeography of the barnacle Semibalanus balanoides. Glob. Ecol. Biogeogr. 21, 716–724 (2012).

    • Google Scholar
  • 149.

    Jore, S. et al. Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasit. Vectors 4, 84 (2011).

  • 150.

    Jump, A. S., Huang, T. & Chou, C. Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35, 204–210 (2012).

    • Google Scholar
  • 151.

    Juvik, J., Rodomsky, B., Price, J., Hansen, E. & Kueffer, C. ‘The upper limits of vegetation on Mauna Loa, Hawaii’: a 50th-anniversary reassessment. Ecology 92, 518–525 (2011).

    • PubMed
    • Google Scholar
  • 152.

    Kawakami, Y., Yamazaki, K. & Ohashi, K. Northward expansion and climatic factors affecting the distribution limits of Cheilomenes sexmaculata (Coleoptera: Coccinellidae) in Japan. Appl. Entomol. Zool. 49, 59–66 (2014).

    • Google Scholar
  • 153.

    Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl Acad. Sci. USA 105, 11823–11826 (2008).

  • 154.

    Kerby, T. K., Cheung, W. W. L., van Oosterhout, C. & Engelhard, G. H. Wondering about wandering whiting: distribution of North Sea whiting between the 1920s and 2000s. Fish. Res. 145, 54–65 (2013).

    • Google Scholar
  • 155.

    Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).

  • 156.

    Kirchman, J. J. & Van Keuren, A. E. Altitudinal range shifts of birds at the southern periphery of the boreal forest: 40 years of change in the Adirondack mountains. Wilson J. Ornithol. 129, 742–753 (2017).

    • Google Scholar
  • 157.

    Kitahara, M., Iriki, M. & Shimizu, G. On the relathionship between the northward distributional expansion of the great mormon butterfly, Papilio memnon Lineatus, and climatic warming in Japan. Trans. Lepidopterol. Soc. Jpn 52, 253–264 (2001).

    • Google Scholar
  • 158.

    Kleisner, K. M. et al. The effects of sub-regional climate velocity on the distribution and spatial extent of marine species assemblages. PLoS ONE 11, e0149220 (2016).

  • 159.

    Koide, D., Yoshida, K., Daehler, C. C. & Mueller-Dombois, D. An upward elevation shift of native and non-native vascular plants over 40 years on the island of Hawai’i. J. Veg. Sci. 28, 939–950 (2017).

    • Google Scholar
  • 160.

    Kopp, C. W. & Cleland, E. E. Shifts in plant species elevational range limits and abundances observed over nearly five decades in a western North America mountain range. J. Veg. Sci. 25, 135–146 (2014).

    • Google Scholar
  • 161.

    Kotwicki, S. & Lauth, R. R. Detecting temporal trends and environmentally-driven changes in the spatial distribution of bottom fishes and crabs on the eastern Bering Sea shelf. Deep-Sea Res. Pt II 94, 231–243 (2013).

    • Google Scholar
  • 162.

    Kreuser, J. M. Climate Change, Range Shifts, and Differential Guild Responses of Michigan Breeding Birds. MSc thesis, Michigan State Univ. (2013).

  • 163.

    Kuhn, E., Lenoir, J., Piedallu, C. & Gégout, J.-C. Early signs of range disjunction of submountainous plant species: an unexplored consequence of future and contemporary climate changes. Glob. Change Biol. 22, 2094–2105 (2016).

    • Google Scholar
  • 164.

    Kuletz, K. J., Renner, M., Labunski, E. A. & Hunt, G. L. Changes in the distribution and abundance of albatrosses in the eastern Bering Sea: 1975–2010. Deep-Sea Res. Pt II 109, 282–292 (2014).

    • Google Scholar
  • 165.

    Kullman, L., Journal, T. & Feb, N. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J. Ecol. 90, 68–77 (2002).

    • Google Scholar
  • 166.

    Kullman, L. & Öberg, L. Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: a landscape ecological perspective. J. Ecol. 97, 415–429 (2009).

    • Google Scholar
  • 167.

    Kurihara, T. et al. Area-specific temporal changes of species composition and species-specific range shifts in rocky-shore mollusks associated with warming Kuroshio Current. Mar. Biol. 158, 2095–2107 (2011).

    • Google Scholar
  • 168.

    Kwon, T., Lee, C. M. & Kim, S. Northward range shifts in Korean butterflies. Clim. Change 126, 163–174 (2014).

    • Google Scholar
  • 169.

    La Sorte, F. A. & Thompson, F. R. III Poleward shifts in winter ranges of North American birds. Ecology 88, 1803–1812 (2007).

    • PubMed
    • Google Scholar
  • 170.

    Landa, C. S., Ottersen, G., Sundby, S., Dingsør, G. E. & Stiansen, J. E. Recruitment, distribution boundary and habitat temperature of an arcto-boreal gadoid in a climatically changing environment: a case study on Northeast Arctic haddock (Melanogrammus aeglefinus). Fish. Oceanogr. 23, 506–520 (2014).

    • Google Scholar
  • 171.

    Larrucea, E. S. & Brussard, P. F. Shift in location of pygmy rabbit (Brachylagus idahoensis) habitat in response to changing environments. J. Arid Environ. 72, 1636–1643 (2008).

    • Google Scholar
  • 172.

    Lättman, H., Milberg, P., Palmer, M. W. & Mattsson, J. Changes in the distributions of epiphytic lichens in southern Sweden using a new statistical method. Nord. J. Bot. 27, 413–418 (2009).

    • Google Scholar
  • 173.

    Le Roux, P. C. & McGeoch, M. A. Rapid range expansion and community reorganization in response to warming. Glob. Change Biol. 14, 2950–2962 (2008).

    • Google Scholar
  • 174.

    Lehikoinen, A. & Virkkala, R. North by north-west: climate change and directions of density shifts in birds. Glob. Change Biol. 22, 1121–1129 (2016).

    • Google Scholar
  • 175.

    Leidenberger, S., Harding, K. & Jonsson, P. R. Ecology and distribution of the isopod genus Idotea in the Baltic Sea: key species in a changing environment. J. Crustac. Biol. 32, 359–381 (2012).

    • Google Scholar
  • 176.

    Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).

  • 177.

    Leonelli, G., Pelfini, M., Morra di Cella, U. & Garavaglia, V. Climate warming and the recent treeline shift in the European Alps: the role of geomorphological factors in high-altitude sites. Ambio 40, 264–273 (2011).

    • PubMed
    • Google Scholar
  • 178.

    Lima, F. P., Ribeiro, P. A., Queiroz, N., Hawkins, S. J. & Santos, A. M. Do distributional shifts of northern and southern species of algae match the warming pattern? Glob. Change Biol. 13, 2592–2604 (2007).

    • Google Scholar
  • 179.

    Lindley, J. & Daykin, S. Variations in the distributions of Centropages chierchiae and Temora stylifera (Copepoda: Calanoida) in the north-eastern Atlantic Ocean and western European shelf waters. ICES J. Mar. Sci. 62, 869–877 (2005).

    • Google Scholar
  • 180.

    Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J. & Haddon, M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob. Change Biol. 15, 719–731 (2009).

    • Google Scholar
  • 181.

    MacLaren, C. A. Climate change drives decline of Juniperus seravschanica in Oman. J. Arid Environ. 128, 91–100 (2016).

    • Google Scholar
  • 182.

    MacLean, I. M. D. et al. Climate change causes rapid changes in the distribution and site abundance of birds in winter. Glob. Change Biol. 14, 2489–2500 (2008).

    • Google Scholar
  • 183.

    Mair, L. et al. Temporal variation in responses of species to four decades of climate warming. Glob. Change Biol. 18, 2439–2447 (2012).

    • Google Scholar
  • 184.

    Máliš, F. et al. Life stage, not climate change, explains observed tree range shifts. Glob. Change Biol. 22, 1904–1914 (2016).

    • Google Scholar
  • 185.

    Martinet, B. et al. Forward to the north: two Euro-Mediterranean bumblebee species now cross the Arctic Circle. Ann. Soc. Entomol. Fr. 51, 303–309 (2015).

    • Google Scholar
  • 186.

    Mason, S. C. et al. Geographical range margins of many taxonomic groups continue to shift polewards. Biol. J. Linn. Soc. 115, 586–597 (2015).

    • Google Scholar
  • 187.

    Massimino, D., Johnston, A. & Pearce-Higgins, J. W. The geographical range of British birds expands during 15 years of warming. Bird Study 62, 523–534 (2015).

    • Google Scholar
  • 188.

    Mathisen, I. E., Mikheeva, A., Tutubalina, O. V., Aune, S. & Hofgaard, A. Fifty years of tree line change in the Khibiny Mountains, Russia: advantages of combined remote sensing and dendroecological approaches. Appl. Veg. Sci. 17, 6–16 (2014).

    • Google Scholar
  • 189.

    Melles, S. J., Fortin, M. J., Lindsay, K. & Badzinski, D. Expanding northward: influence of climate change, forest connectivity, and population processes on a threatened species’ range shift. Glob. Change Biol. 17, 17–31 (2011).

    • Google Scholar
  • 190.

    Menéndez, R., González-Megías, A., Jay-Robert, P. & Marquéz-Ferrando, R. Climate change and elevational range shifts: evidence from dung beetles in two European mountain ranges. Glob. Ecol. Biogeogr. 23, 646–657 (2014).

    • Google Scholar
  • 191.

    Merrill, R. M. et al. Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect. J. Anim. Ecol. 77, 145–155 (2008).

    • PubMed
    • Google Scholar
  • 192.

    Mieszkowska, N. et al. Changes in the range of some common rocky shore species in Britain—a response to climate change? Hydrobiologia 555, 241–251 (2006).

    • Google Scholar
  • 193.

    Molina-Martínez, A. et al. Changes in butterfly distributions and species assemblages on a Neotropical mountain range in response to global warming and anthropogenic land use. Divers. Distrib. 22, 1085–1098 (2016).

    • Google Scholar
  • 194.

    Monahan, W. B. & Hijmans, R. J. Ecophysiological constraints shape autumn migratory response to climate change in the North American field sparrow. Biol. Lett. 4, 595–598 (2008).

  • 195.

    Morelli, T. L. et al. Anthropogenic refugia ameliorate the severe climate-related decline of a montane mammal along its trailing edge. Proc. R. Soc. Lond. B Biol. Sci. 279, 4279–4286 (2012).

    • Google Scholar
  • 196.

    Moreno-Fernández, D., Hernández, L., Sánchez-González, M., Cañellas, I. & Montes, F. Space–time modeling of changes in the abundance and distribution of tree species. Ecol. Manag. 372, 206–216 (2016).

    • Google Scholar
  • 197.

    Moreno-Rueda, G., Pleguezuelos, J. M., Pizarro, M. & Montori, A. Northward shifts of the distributions of Spanish reptiles in association with climate change. Conserv. Biol. 26, 278–283 (2012).

    • PubMed
    • Google Scholar
  • 198.

    Moret, P., Aráuz, M., de los, A., Gobbi, M. & Barragán, A. Climate warming effects in the tropical Andes: first evidence for upslope shifts of Carabidae (Coleoptera) in Ecuador. Insect Conserv. Divers. 9, 342–350 (2016).

    • Google Scholar
  • 199.

    Moritz, C. et al. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322, 261–264 (2008).

  • 200.

    Morueta-Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).

  • 201.

    Moskwik, M. Recent elevational range expansions in plethodontid salamanders (Amphibia: Plethodontidae) in the southern Appalachian Mountains. J. Biogeogr. 41, 1957–1966 (2014).

    • Google Scholar
  • 202.

    Mueter, F. J. & Litzow, M. A. Sea ice retreat alters the biogeography of the Bering Sea continental shelf. Ecol. Appl. 18, 309–320 (2008).

    • PubMed
    • Google Scholar
  • 203.

    Myers, P., Lundrigan, B. L., Hoffman, S. M. G., Haraminac, A. P. & Seto, S. H. Climate-induced changes in the small mammal communities of the Northern Great Lakes Region. Glob. Change Biol. 15, 1434–1454 (2009).

    • Google Scholar
  • 204.

    Neukermans, G., Oziel, L. & Babin, M. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic. Glob. Change Biol. 24, 2545–2553 (2018).

    • Google Scholar
  • 205.

    Nicastro, K. R. et al. Shift happens: trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus. BMC Biol. 11, 6 (2013).

  • 206.

    Nicolas, D. et al. Impact of global warming on European tidal estuaries: some evidence of northward migration of estuarine fish species. Reg. Environ. Change 11, 639–649 (2011).

    • Google Scholar
  • 207.

    Niven, D. K., Butcher, G. S. & Bancroft, G. T. Christmas bird counts and climate change: northward shifts in early winter abundance. Am. Birds 63, 10–15 (2010).

    • Google Scholar
  • 208.

    Nye, J. A., Link, J. S., Hare, J. A. & Overholtz, W. J. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393, 111–129 (2009).

    • Google Scholar
  • 209.

    Orensanz, J. L., Ernst, B., Armstrong, D. A., Stabeno, P. J. & Livingston, P. Contraction of the geographical range of distribution of snow crab (Chionoecetes opilio) in the Eastern Bering Sea: an environmental ratchet? Cal Coop. Ocean Fish 45, 65–79 (2004).

    • Google Scholar
  • 210.

    Ottosen, K. M., Steingrund, P., Magnussen, E. & Payne, M. R. Distribution and timing of spawning Faroe Plateau cod in relation to warming spring temperatures. Fish. Res. 198, 14–23 (2018).

    • Google Scholar
  • 211.

    Overholtz, W. J., Hare, J. A. & Keith, C. M. Impacts of interannual environmental forcing and climate change on the distribution of Atlantic mackerel on the U.S. northeast continental shelf. Mar. Coast. Fish. 3, 219–232 (2011).

    • Google Scholar
  • 212.

    Pakeman, R. J. et al. Species composition of coastal dune vegetation in Scotland has proved resistant to climate change over a third of a century. Glob. Change Biol. 21, 3738–3747 (2015).

    • Google Scholar
  • 213.

    Paprocki, N., Heath, J. A. & Novak, S. J. Regional distribution shifts help explain local changes in wintering raptor abundance: implications for interpreting population trends. PLoS ONE 9, e86814 (2014).

  • 214.

    Parolo, G. & Rossi, G. Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl. Ecol. 9, 100–107 (2008).

    • Google Scholar
  • 215.

    Pateman, R. M., Hill, J. K., Roy, D. B., Fox, R. & Thomas, C. D. Temperature-dependent alterations in host use drive rapid range expansion in a butterfly. Science 336, 1028–1030 (2012).

  • 216.

    Peñuelas, J. & Boada, M. A global change-induced biome shift in the Montseny mountains (NE Spain). Glob. Change Biol. 9, 131–140 (2003).

    • Google Scholar
  • 217.

    Perissinotto, R., Pringle, E. L. & Giliomee, J. H. Southward expansion in beetle and butterfly ranges in South Africa. Afr. Entomol. 19, 61–69 (2011).

    • Google Scholar
  • 218.

    Pitt, N. R., Poloczanska, E. S. & Hobday, A. J. Climate-driven range changes in Tasmanian intertidal fauna. Mar. Freshw. Res. 61, 963–970 (2010).

    • CAS
    • Google Scholar
  • 219.

    Pernollet, C. A., Korner-Nievergelt, F. & Jenni, L. Regional changes in the elevational distribution of the Alpine Rock Ptarmigan Lagopus muta helvetica in Switzerland. Ibis 157, 823–836 (2015).

    • Google Scholar
  • 220.

    Péron, C. et al. Interdecadal changes in at-sea distribution and abundance of subantarctic seabirds along a latitudinal gradient in the Southern Indian Ocean. Glob. Change Biol. 16, 1895–1909 (2010).

    • Google Scholar
  • 221.

    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

  • 222.

    Peterson, T. A. Subtle recent distributional shifts in Great Plains bird species. Southwest. Nat. 48, 289–292 (2003).

    • Google Scholar
  • 223.

    Ploquin, E. F., Herrera, J. M. & Obeso, J. R. Bumblebee community homogenization after uphill shifts in montane areas of northern Spain. Oecologia 173, 1649–1660 (2013).

    • PubMed
    • Google Scholar
  • 224.

    Poloczanska, E. S. et al. Little change in the distribution of rocky shore faunal communities on the Australian east coast after 50 years of rapid warming. J. Exp. Mar. Biol. Ecol. 400, 145–154 (2011).

    • Google Scholar
  • 225.

    Popy, S., Bordignon, L. & Prodon, R. A weak upward elevational shift in the distributions of breeding birds in the Italian Alps. J. Biogeogr. 37, 57–67 (2009).

    • Google Scholar
  • 226.

    Potvin, D. A., Välimäki, K. & Lehikoinen, A. Differences in shifts of wintering and breeding ranges lead to changing migration distances in European birds. J. Avian Biol. 47, 619–628 (2016).

    • Google Scholar
  • 227.

    Pöyry, J., Luoto, M., Heikkinen, R. K., Kuussaari, M. & Saarinen, K. Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 15, 732–743 (2009).

    • Google Scholar
  • 228.

    Precht, W. F. & Aronson, R. B. Climate flickers and range shifts of reef corals. Front. Ecol. Evol. 2, 307–314 (2004).

    • Google Scholar
  • 229.

    Pyke, G. H., Thomson, J. D., Inouye, D. W. & Miller, T. J. Effects of climate change on phenologies and distributions of bumble bees and the plants they visit. Ecosphere 7, e01267 (2016).

    • Google Scholar
  • 230.

    Quero, J. Changes in the Euro-Atlantic fish species composition resulting from fishing and ocean warming. Ital. J. Zool. 65, 493–499 (1998).

    • Google Scholar
  • 231.

    Rannow, S. Do shifting forest limits in south-west Norway keep up with climate change? Scand. J. Res. 28, 574–580 (2013).

    • Google Scholar
  • 232.

    Rappole, J. H., Glasscosk, S., Goldberg, K., Song, D. & Faridani, S. Range change among new world tropical and subtropical birds. Bonn. Zool. Monogr. 57, 151–167 (2011).

    • Google Scholar
  • 233.

    Raxworthy, C. J. et al. Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Glob. Change Biol. 14, 1703–1720 (2008).

    • Google Scholar
  • 234.

    Reid, S. B. & Goodman, D. H. Pacific lamprey in coastal drainages of California: occupancy patterns and contraction of the southern range. Trans. Am. Fish. Soc. 145, 703–711 (2016).

    • Google Scholar
  • 235.

    Reif, J. & Flousek, J. The role of species’ ecological traits in climatically driven altitudinal range shifts of central European birds. Oikos 121, 1053–1060 (2012).

    • Google Scholar
  • 236.

    Renner, M. et al. Modeled distribution and abundance of a pelagic seabird reveal trends in relation to fisheries. Mar. Ecol. Prog. Ser. 484, 259–277 (2013).

    • Google Scholar
  • 237.

    Riley, M. E., Johnston, C. A., Feller, I. C. & Griffen, B. D. Range expansion of Aratus pisonii (mangrove tree crab) into novel vegetative habitats. Southeast. Nat. 13, N43–N48 (2014).

    • Google Scholar
  • 238.

    Rivadeneira, M. M. & Ferna, M. Shifts in southern endpoints of distribution in rocky intertidal species along the south-eastern Pacific coast. J. Biogeogr. 32, 203–209 (2005).

    • Google Scholar
  • 239.

    Rowe, K. C. et al. Spatially heterogeneous impact of climate change on small mammals of montane California. Proc. R. Soc. Lond. B Biol. Sci. 282, 20141857 (2014).

    • Google Scholar
  • 240.

    Rowe, R. J., Finarelli, J. A. & Rickart, E. A. Range dynamics of small mammals along an elevational gradient over an 80-year interval. Glob. Change Biol. 16, 2930–2943 (2010).

    • Google Scholar
  • 241.

    Rubal, M., Veiga, P., Cacabelos, E., Moreira, J. & Sousa-Pinto, I. Increasing sea surface temperature and range shifts of intertidal gastropods along the Iberian Peninsula. J. Sea Res. 77, 1–10 (2013).

    • Google Scholar
  • 242.

    Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).

  • 243.

    Sabatés, A., Martín, P., Lloret, J. & Raya, V. Sea warming and fish distribution: the case of the small pelagic fish, Sardinella aurita, in the western Mediterranean. Glob. Change Biol. 12, 2209–2219 (2006).

    • Google Scholar
  • 244.

    Santos, M. J., Thorne, J. H. & Moritz, C. Synchronicity in elevation range shifts among small mammals and vegetation over the last century is stronger for omnivores. Ecography 38, 556–568 (2015).

    • Google Scholar
  • 245.

    Savage, J. & Vellend, M. Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography 38, 546–555 (2015).

    • Google Scholar
  • 246.

    Serrano, E. et al. Rapid northward spread of a Zooxanthellate coral enhanced by artificial structures and sea warming in the western Mediterranean. PLoS ONE 8, e52739 (2013).

  • 247.

    Sheldon, A. L. Possible climate-induced shift of stoneflies in a southern Appalachian catchment. Freshw. Sci. 31, 765–774 (2012).

    • Google Scholar
  • 248.

    Shiyatov, S. G., Terent’ev, M. M., Fomin, V. V. & Zimmermann, N. E. Altitudinal and horizontal shifts of the upper boundaries of open and closed forests in the Polar Urals in the 20th century. Russ. J. Ecol. 38, 223–227 (2007).

    • Google Scholar
  • 249.

    Sittaro, F., Paquette, A., Messier, C. & Nock, C. A. Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits. Glob. Change Biol. 23, 3292–3301 (2017).

    • Google Scholar
  • 250.

    Solow, A. et al. A test for a shift in the boundary of the geographical range of a species. Biol. Lett. 10, 20130808 (2014).

  • 251.

    Song, X. et al. Climate warming-induced upward shift of Moso bamboo population on Tianmu Mountain, China. J. Mt. Sci. 10, 363–369 (2013).

    • Google Scholar
  • 252.

    Speed, J. D. M., Austrheim, G., Hester, A. J. & Mysterud, A. Elevational advance of alpine plant communities is buffered by herbivory. J. Veg. Sci. 23, 617–625 (2012).

    • Google Scholar
  • 253.

    Stafford, R., Hart, A. G. & Goodenough, A. E. A visual method to identify significant latitudinal changes in species’ distributions. Ecol. Inform. 15, 74–84 (2013).

    • Google Scholar
  • 254.

    Stuart-Smith, R. D., Barrett, N. S., Stevenson, D. G. & Edgar, G. J. Stability in temperate reef communities over a decadal time scale despite concurrent ocean warming. Glob. Change Biol. 16, 122–134 (2010).

    • Google Scholar
  • 255.

    Stueve, K. M., Isaacs, R. E., Tyrrell, L. E. & Densmore, R. V. Spatial variability of biotic and abiotic tree establishment constraints across a treeline ecotone in the Alaska Range. Ecology 92, 496–506 (2011).

    • PubMed
    • Google Scholar
  • 256.

    Sultaire, S. M. et al. Climate change surpasses land-use change in the contracting range boundary of a winter-adapted mammal. Proc. R. Soc. Lond. B Biol. Sci. 283, 20153104 (2016).

    • Google Scholar
  • 257.

    Swaby, S. E. & Potts, G. W. The sailfin dory, a first British record. J. Fish Biol. 54, 1338–1340 (1999).

    • Google Scholar
  • 258.

    Tape, K. D., Gustine, D. D., Ruess, R. W., Adams, L. G. & Clark, J. A. Range expansion of moose in arctic Alaska linked to warming and increased shrub habitat. PLoS ONE 11, e0152636 (2016).

  • 259.

    Tayleur, C. et al. Swedish birds are tracking temperature but not rainfall: evidence from a decade of abundance changes. Glob. Ecol. Biogeogr. 24, 859–872 (2015).

    • Google Scholar
  • 260.

    Telwala, Y., Brook, B. W., Manish, K. & Pandit, M. K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 8, e57103 (2013).

  • 261.

    Thorson, J. T., Ianelli, J. N. & Kotwicki, S. The relative influence of temperature and size-structure on fish distribution shifts: a case-study on walleye pollock in the Bering Sea. Fish Fish. 18, 1073–1084 (2017).

    • Google Scholar
  • 262.

    Tingley, M. W., Koo, M. S., Moritz, C., Rush, A. C. & Beissinger, S. R. The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Glob. Change Biol. 18, 3279–3290 (2012).

    • Google Scholar
  • 263.

    Tougou, D., Musolin, D. L. & Fujisaki, K. Some like it hot! Rapid climate change promotes changes in distribution ranges of Nezara viridula and Nezara antennata in Japan. Entomol. Exp. Appl. 130, 249–258 (2009).

    • Google Scholar
  • 264.

    Tryjanowski, P., Sparks, T. H. & Profus, P. Uphill shifts in the distribution of the white stork Ciconia ciconia in southern Poland: the importance of nest quality. Divers. Distrib. 11, 219–223 (2005).

    • Google Scholar
  • 265.

    Tu, C., Tian, Y. & Hsieh, C.-H. Effects of climate on temporal variation in the abundance and distribution of the demersal fish assemblage in the Tsushima Warm Current region of the Japan Sea. Fish. Oceanogr. 24, 177–189 (2015).

    • Google Scholar
  • 266.

    Urli, M. et al. Inferring shifts in tree species distribution using asymmetric distribution curves: a case study in the Iberian mountains. J. Veg. Sci. 25, 147–159 (2014).

    • Google Scholar
  • 267.

    Välimäki, K., Lindén, A. & Lehikoinen, A. Velocity of density shifts in Finnish landbird species depends on their migration ecology and body mass. Oecologia 181, 313–321 (2016).

    • PubMed
    • Google Scholar
  • 268.

    Van Bogaert, R. et al. A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. J. Biogeogr. 38, 907–921 (2011).

    • Google Scholar
  • 269.

    Van Hal, R., Smits, K. & Rijnsdorp, A. D. How climate warming impacts the distribution and abundance of two small flatfish species in the North Sea. J. Sea Res. 64, 76–84 (2010).

    • Google Scholar
  • 270.

    VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).

    • Google Scholar
  • 271.

    Veech, J. A., Small, M. F. & Baccus, J. T. The effect of habitat on the range expansion of a native and an introduced bird species. J. Biogeogr. 38, 69–77 (2011).

    • Google Scholar
  • 272.

    Virkkala, R., Heikkinen, R. K., Lehikoinen, A. & Valkama, J. Matching trends between recent distributional changes of northern-boreal birds and species–climate model predictions. Biol. Conserv. 172, 124–127 (2014).

    • Google Scholar
  • 273.

    Virkkala, R. & Lehikoinen, A. Patterns of climate-induced density shifts of species: poleward shifts faster in northern boreal birds than in southern birds. Glob. Change Biol. 20, 2995–3003 (2014).

    • Google Scholar
  • 274.

    Virkkala, R. & Lehikoinen, A. Birds on the move in the face of climate change: high species turnover in northern Europe. Ecol. Evol. 7, 8201–8209 (2017).

  • 275.

    Virtanen, R. et al. Recent vegetation changes at the high-latitude tree line ecotone are controlled by geomorphological disturbance, productivity and diversity. Glob. Ecol. Biogeogr. 19, 810–821 (2010).

    • Google Scholar
  • 276.

    Vittoz, P., Bodin, J., Ungricht, S., Burga, C. A. & Walther, G. One century of vegetation change on Isla Persa, a nunatak in the Bernina massif in the Swiss Alps. J. Veg. Sci. 19, 671–680 (2008).

    • Google Scholar
  • 277.

    Walters, G. E. & Wilderbuer, T. K. Decreasing length at age in a rapidly expanding population of northern rock sole in the eastern Bering Sea and its effect on management advice. J. Sea Res. 44, 17–26 (2000).

    • Google Scholar
  • 278.

    Walther, G.-R., Beißner, S. & Burga, C. A. Trends in the upward shift of alpine plants. J. Veg. Sci. 16, 541–548 (2005).

    • Google Scholar
  • 279.

    Wehtje, W. The range expansion of the great-tailed grackle (Quiscalus mexicanus Gmelin) in North America since 1880. J. Biogeogr. 30, 1593–1607 (2003).

    • Google Scholar
  • 280.

    Weinberg, J. Bathymetric shift in the distribution of Atlantic surfclams: response to warmer ocean temperature. ICES J. Mar. Sci. 62, 1444–1453 (2005).

    • Google Scholar
  • 281.

    Wells, C. N. & Tonkyn, D. W. Range collapse in the Diana fritillary, Speyeria diana (Nymphalidae). Insect Conserv. Divers. 7, 365–380 (2014).

    • Google Scholar
  • 282.

    Wen, Z. et al. Heterogeneous distributional responses to climate warming: evidence from rodents along a subtropical elevational gradient. BMC Ecol. 17, 17 (2017).

  • 283.

    Wernberg, T. et al. Seaweed communities in retreat from ocean warming. Curr. Biol. 21, 1828–1832 (2011).

  • 284.

    Wethey, D. S. & Woodin, S. A. Ecological hindcasting of biogeographic responses to climate change in the European intertidal zone. Hydrobiologia 606, 139–151 (2008).

    • Google Scholar
  • 285.

    Wilson, R. J. et al. Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett. 8, 1138–1146 (2005).

    • PubMed
    • Google Scholar
  • 286.

    Wilson, S., Anderson, E. M., Wilson, A. S. G., Bertram, D. F. & Arcese, P. Citizen science reveals an extensive shift in the winter distribution of migratory western grebes. PLoS ONE 8, e65408 (2013).

  • 287.

    Wolf, A., Zimmerman, N. B., Anderegg, W. R. L., Busby, P. E. & Christensen, J. Altitudinal shifts of the native and introduced flora of California in the context of 20th-century warming. Glob. Ecol. Biogeogr. 25, 418–429 (2016).

    • Google Scholar
  • 288.

    Wright, D. H., NGuyen, C. V. & Anderson, S. Upward shifts in recruitment of high-elevation tree species in the northern Sierra Nevada, California. Calif. Fish Game 102, 17–31 (2016).

    • Google Scholar
  • 289.

    Wu, J. Detecting and attributing the effects of climate change on the distributions of snake species over the past 50 years. Environ. Manag. 57, 207–219 (2016).

    • Google Scholar
  • 290.

    Wu, J. Can changes in the distribution of lizard species over the past 50 years be attributed to climate change? Theor. Appl. Climatol. 125, 785–798 (2016).

    • Google Scholar
  • 291.

    Wu, J. & Shi, Y. Attribution index for changes in migratory bird distributions: the role of climate change over the past 50 years in China. Ecol. Inform. 31, 147–155 (2016).

    • Google Scholar
  • 292.

    Yamano, H., Sugihara, K. & Nomura, K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, L04601 (2011).

    • Google Scholar
  • 293.

    Yang, D.-S., Conroy, C. J. & Moritz, C. Contrasting responses of Peromyscus mice of Yosemite National Park to recent climate change. Glob. Change Biol. 17, 2559–2566 (2011).

    • Google Scholar
  • 294.

    Yang, L. et al. Long-term ecological data for conservation: range change in the black-billed capercaillie (Tetrao urogalloides) in northeast China (1970s–2070s). Ecol. Evol. 8, 3862–3870 (2018).

  • 295.

    Yemane, D. et al. Assessing changes in the distribution and range size of demersal fish populations in the Benguela Current Large Marine Ecosystem. Rev. Fish Biol. Fish. 24, 463–483 (2014).

    • Google Scholar
  • 296.

    Yukawa, J. et al. Distribution range shift of two allied species, Nezara viridula and N. antennata (Hemiptera: Pentatomidae), in Japan, possibly due to global warming. Appl. Entomol. Zool. 42, 205–215 (2007).

    • Google Scholar
  • 297.

    Zhang, R. et al. Geographic characteristics of sable (Martes zibellina) distribution over time in Northeast China. Ecol. Evol. 7, 4016–4023 (2017).

  • 298.

    Zhang, Y., Xu, M., Adams, J. & Wang, X. Can Landsat imagery detect tree line dynamics? Int. J. Remote Sens. 30, 1327–1340 (2009).

    • Google Scholar
  • 299.

    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).

    • Google Scholar
  • 300.

    Zuckerberg, B., Woods, A. M. & Porter, W. F. Poleward shifts in breeding bird distributions in New York State. Glob. Change Biol. 15, 1866–1883 (2009).

    • Google Scholar
  • 301.

    R Core Development Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 302.

    Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Res 2, 191 (2013).

  • 303.

    Gastner, M. T. & Newman, M. E. J. Diffusion-based method for producing density-equalizing maps. Proc. Natl Acad. Sci. USA 101, 7499–7504 (2004).

  • 304.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    • Google Scholar
  • 305.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).

    • Google Scholar
  • 306.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    • Google Scholar
  • 307.

    Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873 (2008).

    • PubMed
    • Google Scholar

  • Source: Ecology - nature.com

    Solar energy farms could offer second life for electric vehicle batteries

    Width identification of transition zone between desert and oasis based on NDVI and TCI