White, S. S. & Birnbaum, L. S. An overview of the effects of dioxins and dioxin-like compounds on vertebrates, as documented in human and ecological epidemiology. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 27, 197–211 (2009).
Harris, M. L. & Elliott, J. E. Effects of polychlorinated biphenyls, dibenzo-p-dioxins and dibenzofurans, and polybrominated diphenyl ethers in wild birds. In Environmental Contaminants in Biota: Interpreting Tisue Concentrations (eds Beyer, W. N. & Meador, J. P.) 477–528 (CRC Press, Cambridge, 2011).
Grasman, K. A., Scanlon, P. F. & Fox, G. A. Reproductive and physiological effects of environmental contaminants in fish-eating birds of the Great Lakes: A review of historical trends. Environ. Monit. Assess. 53, 117–145 (1998).
Okey, A. B. An aryl hydrocarbon receptor odyssey to the shores of toxicology: The Deichmann Lecture, International Congress of Toxicology-XI. Toxicol. Sci. 98, 5–38 (2007).
Denison, M. S., Soshilov, A. A., He, G., DeGroot, D. E. & Zhao, B. Exactly the same but different: Promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol. Sci. 124, 1–22 (2011).
Tian, J. et al. The aryl hydrocarbon receptor: A key bridging molecule of external and internal chemical signals. Environ. Sci. Technol. 49, 9518–9531 (2015).
Beischlag, T. V., Morales, J. L., Hollingshead, B. D. & Perdew, G. H. The aryl hydrocarbon receptor complex and the control of gene expression. Crit. Rev. Eukaryot. Gene Expr. 18, 207–250 (2008).
Hahn, M. E. Aryl hydrocarbon receptors: Diversity and evolution. Chem. Biol. Interact. 141, 131–160 (2002).
Hwang, J.-H. et al. Ecological factors drive natural selection pressure of avian aryl hydrocarbon receptor 1 genotypes. Sci. Rep. 6, 27526 (2016).
Head, J. A., Hahn, M. E. & Kennedy, S. W. Key amino acids in the aryl hydrocarbon receptor predict dioxin sensitivity in avian species. Environ. Sci. Technol. 42, 7535–7541 (2008).
Farmahin, R. et al. Amino acid sequence of the ligand-binding domain of the aryl hydrocarbon receptor 1 predicts sensitivity of wild birds to effects of dioxin-like compounds. Toxicol. Sci. 131, 139–152 (2013).
Head, J. A. & Kennedy, S. W. Correlation between an in vitro and an in vivo measure of dioxin sensitivity in birds. Ecotoxicology 19, 377–382 (2010).
Karchner, S. I., Franks, D. G., Kennedy, S. W. & Hahn, M. E. The molecular basis for differential dioxin sensitivity in birds: Role of the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. U.S.A. 103, 6252–6257 (2006).
Farmahin, R. et al. Sequence and in vitro function of chicken, ring-necked pheasant, and Japanese quail AHR1 predict in vivo sensitivity to dioxins. Environ. Sci. Technol. 46, 2967–2975 (2012).
Manning, G. E. et al. A luciferase reporter gene assay and aryl hydrocarbon receptor 1 genotype predict the LD(50) of polychlorinated biphenyls in avian species. Toxicol. Appl. Pharmacol. 263, 390–401 (2012).
Fujisawa, N. et al. Dioxin sensitivity-related two critical amino acids of aryl hydrocarbon receptor may not correlate with the taxonomy of phylogeny in avian species. J. Vet. Med. Sci. 75, 1577–1583 (2013).
McGill, B. J., Enquist, B. J., Wiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
Menezes, S., Baird, D. J. & Soares, A. M. V. M. Beyond taxonomy: A review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. J. Appl. Ecol. 47, 711–719 (2010).
Chown, S. L. Trait-based approaches to conservation physiology: Forecasting environmental change risks from the bottom up. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1615–1627 (2012).
Baird, D. J., Rubach, M. N. & Van den Brink, P. J. Trait-based ecological risk assessment (TERA): The new frontier?. Integr. Environ. Assess. Manage. 4, 2–3 (2008).
De Lange, H., Lahr, J., Van der Pol, J. J., Wessels, Y. & Faber, J. H. Ecological vulnerability in wildlife: An expert judgment and multicriteria analysis tool using ecological traits to assess relative impact of pollutants. Environ. Toxicol. Chem. 28, 2233–2240 (2009).
Klaassen, M., Hoye, B. J., Nolet, B. A. & Buttemer, W. A. Ecophysiology of avian migration in the face of current global hazards. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1719–1732 (2012).
Reynolds, J. D. Life histories and extinction risk. In Macroecology (eds Blackburn, T. M. & Gaston, K. J.) 195–217 (Blackwell Publishing, Ltd., Hoboken, 2003).
Bennett, P. M. & Owens, I. P. F. Variation in extinction risk among birds: change or evolutionary predisposition?. Proc. R. Soc. Lond. B 264, 401–408 (1997).
Morrow, E. H. & Pitcher, T. E. Sexual selection and the risk of extinction in birds. Proc. R. Soc. Lond. B 270, 1793–1799 (2003).
Thomas, G. H., Lanctot, R. B. & Székely, T. Can intrinsic factors explain population declines in North American breeding shorebirds? A comparative analysis. Anim. Conserv. 9, 252–258 (2006).
Nosek, J. A., Craven, S. R., Karasov, W. H. & Peterson, R. E. 2,3,7,8-Tetrachlorodibenzo-p-dioxin in terrestrial environments: Implications for resource management. Wildl. Soc. Bull. 21, 179–187 (1993).
Borga, K., Fisk, A. T., Hoekstra, P. E. & Muir, D. C. G. Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in Arctic marine food webs. Environ. Toxicol. Chem. 23, 2367–2385 (2004).
Post, D. M. The long and short of food-chain length. Trends Ecol. Evol. 17, 269–277 (2002).
Arnoldsson, K., Andersson, P. L. & Haglund, P. Photochemical formation of polybrominated dibenzo-p-dioxins from environmentally abundant hydroxylated polybrominated diphenyl ethers. Environ. Sci. Technol. 46, 7567–7574 (2012).
Haglund, P. et al. Brominated dibenzo-p-dioxins: A new class of marine toxins?. Environ. Sci. Technol. 41, 3069–3074 (2007).
Gribble, G. W. Naturally Occurring Organohalogen Compounds: A Comprehensive Update (Springer, Wien, 2010).
Sawada, T., Aono, M., Asakawa, S., Ito, A. & Awano, K. Structure determination and total synthesis of a novel antibacterial substance, AB0022A, produced by a cellular slime mold. J. Antibiot. (Tokyo) 53, 959–966 (2000).
Tanahashi, T., Takenaka, Y., Nagakura, N. & Hamada, N. Dibenzofurans from the cultured lichen mycobionts of Lecanora cinereocarnea. Phytochemistry 58, 1129–1134 (2001).
Leighton, F. A. The toxicity of petroleum oils to birds. Environ. Rev. 1, 92–103 (1993).
Albers, P. H. Birds and polycyclic aromatic hydrocarbons. Avian Poult. Biol. Rev. 17, 125–140 (2006).
Latimer, J. S. & Zheng, J. The sources, transport, and fat of PAHs in the marine environment. In PAHs: An Ecotoxicological Perspective (ed. Douben, P. E. T.) (Wiley, Hoboken, 2003).
Machala, M., Vondracek, J., Blaha, L., Ciganek, M. & Neca, J. Aryl hydrocarbon receptor-mediated activity of mutagenic polycyclic aromatic hydrocarbons determined using in vitro reporter gene assay. Mutat. Res. 497, 49–62 (2001).
Abdel-Shafy, H. I. & Mansour, M. S. M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25, 107–123 (2016).
Tanabe, S. Contamination and toxic effects of persistent endocrine disrupters in marine mammals and birds. Mar. Pollut. Bull. 45, 69–77 (2002).
Booth, S. et al. Global deposition of airborne dioxin. Mar. Pollut. Bull. 75, 182–186 (2013).
Rowe, C. L. “The calamity of so long life”: Life histories, contaminants, and potential emerging threats to long-lived vertebrates. Bioscience 58, 623–631 (2008).
Sutter, G. I. Analyses of Laboratory and Field Studies of Reproductive Toxicity in Birds Exposed to Dioxin-Like Compounds for the Use in Ecological Risk Assessment (2003).
Rodewald, P. G. (ed.) The Birds of North America (Cornell Laboratory of Ornithology, Itaca, 2015).
Pitcher, T. E., Dunn, P. O. & Whittingham, L. A. Sperm competition and the evolution of testes size in birds. J. Evol. Biol. 18, 557–567 (2005).
Robinson, S. A., Lajeunesse, M. J. & Forbes, M. R. Sex differences in mercury contamination of birds: Testing multiple hypotheses with meta-analysis. Environ. Sci. Technol. 46, 7094–7101 (2012).
Dunning, J. B. J. CRC Handbook of Avian Body Masses (CRC Press, Boca Raton, 2007).
Google Maps, North America. (2015). www.google.ca/maps/place/North+America/@2.8138232,163.4417995,2z/data=!3m1!4b1!4m2!3m1!1s0x52b30b71698e729d:0x131328839761a382. Accessed 20 Dec 2015.
Rubolini, D., Liker, A., Garamszegi, L. Z., Møller, A. P. & Saino, N. Using the birdtree.org website to obtain robust phylogenies for avian comparative studies: A primer. Curr. Zool. 61, 959–965 (2015).
Jetz, W., Thomas, G. H., Joy, J. B., Harman, K. & Mooers, O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
Jetz, W. et al. Global distribution and conservation of evolutionary distinctness in birds. Curr. Biol. 24, 919–930 (2014).
Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).
Holder, M. T., Sukumaran, J. & Lewis, P. O. A justification for reporting the majority-rule consensus tree in Bayesian phylogenetics. Syst. Biol. 57, 814–821 (2008).
Sukumaran, J. & Holder, M. T. Sumtrees: Phylogenetic tree summarization, version 4.0.0. https://github.com/jeetsumkamaran/DendroPy. Accessed 31 Jan 2015
Sukumaran, J. & Holder, M. T. DendroPy: A Python library for phylogenetic computing. Bioinformatics 26, 1569–1571 (2010).
Python Software Foundation. Python Language Reference (2015).
Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).
R Core Team. R: A Language and Environment for Statistical Computing (2019).
Mundry, R. Statistical issues and assumptions of phylogenetic generalized least squares. In Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 131–153 (Springer, New York, 2014).
De’ath, G. Boosted trees for ecological modeling and prediction. Ecology 88, 243–251 (2007).
Elith, J., Leathwick, J. R. & Hastie, T. A. A working gruide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford University Press, Oxford, 1991).
De’ath, G. Multivariate regression trees: A new technique for constrined classification analysis. Ecology 83, 1103–1117 (2002).
Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712–726 (2002).
Freckleton, R. P., Cooper, N. & Jetz, W. Comparative methods as a statistical fix: The dangers of ignoring an evolutionary model. Am. Nat. 178, E10–E17 (2011).
Diniz-Filho, J. A. F., San’Ana, L. M. & Bini, M. An eigenvector method for estimating phylogenetic inertia. Evolution 52, 1247–1262 (1998).
Covain, R., Dray, S., Fisch-Muller, S. & Monotoya-Burgos, J. I. Assessing phylogenetic dependence of morphological traits using co-inertia prior to investigate character evolution in Loricariinae catfishes. Mol. Phylogenet. Evol. 46, 986–1002 (2008).
Galvan, I. & Moller, A. P. Brain size and the expression of pheomelanin-based colour in birds. J. Evol. Biol. 24, 999–1006 (2011).
Galvan, I. et al. Long lifespans have evolved with long and monounsaturated fatty acids in birds. Evolution 69, 2776–2784 (2015).
Nogues-Bravo, D. et al. Phenotypic correlates of potential range size and range filling in European trees. Perspect. Plant Ecol. Evol. Syst. 16, 219–227 (2014).
Bisson, I.-A., Safi, K. & Holland, R. A. Evidence for repeated independent evolution of migration in the largest family of bats. PLoS ONE 4, e7504 (2009).
Diniz-Filho, J. A. F. & Torres, N. M. Phylogenetic comparative methods and the geographic range size–body relationship in new world terrestrial carnivora. Evol. Ecol. 16, 51–67 (2002).
Diniz-Filho, J. A. F. et al. On the selection of phylogenetic eigenvectors for ecological analyses. Ecography 35, 239–249 (2012).
Diniz-Filho, J. A. F., Rangel, T. F., Santos, T. & Bini, L. M. Exploring patterns of interspecific variation in quantitative traits using sequential phylogenetic eigenvector regressions. Evolution (N. Y.) 66, 1079–1090 (2012).
Hijmans, R. J., Phillips, R. J., Leathwick, S. & Elith, J. dismo: Species distrubution modeling (2016).
Source: Ecology - nature.com