in

Strip width ratio expansion with lowered N fertilizer rate enhances N complementary use between intercropped pea and maize

  • 1.

    Branca, G., Lipper, L., McCarthy, N. & Jolejole, M. C. Food security, climate change, and sustainable land management. A review. Agrono. Sustain. Dev. 33, 635–650 (2013).

    Article  Google Scholar 

  • 2.

    Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 4.

    Huang, Y. & Tang, Y. An estimate of greenhouse gas (N2O and CO2) mitigation potential under various scenarios of nitrogen use efficiency in Chinese croplands. GCB Bioenergy 16, 2958–2970 (2010).

    Google Scholar 

  • 5.

    Gan, Y. T. et al. Improving farming practices reduces the carbon footprint of spring wheat production. Nat. Commun. 5, 5012. https://doi.org/10.1038/ncomms6012 (2014).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Cameron, K. C., Di, H. J. & Moir, J. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 162, 145–173 (2013).

    CAS  Article  Google Scholar 

  • 7.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 8.

    Lithourgidis, A. S., Dordas, C. A., Damalas, C. A. & Vlachostergios, D. N. Annual intercrops: An alternative pathway for sustainable agriculture. Aust. J. Crop Sci. 5, 396–410 (2011).

    Google Scholar 

  • 9.

    Tsubo, M., Walker, S. & Mukhala, E. Comparisons of radiation use efficiency of mono-/inter-cropping systems with different row orientations. Field Crop Res. 71, 17–29 (2001).

    Article  Google Scholar 

  • 10.

    Li, L. et al. Root distribution and interactions between intercropped species. Oecologia 147, 280–290 (2006).

    ADS  PubMed  Article  Google Scholar 

  • 11.

    Li, L. et al. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crop Res. 71, 123–137 (2001).

    Article  Google Scholar 

  • 12.

    Brooker, R. W., Karley, A. J., Newton, A. C., Pakeman, R. J. & Schöb, C. Facilitation and sustainable agriculture: A mechanistic approach to reconciling crop production and conservation. Funct. Ecol. 30, 98–107 (2016).

    Article  Google Scholar 

  • 13.

    Zhang, F. & Li, L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil 248, 305–312 (2003).

    CAS  Article  Google Scholar 

  • 14.

    Li, Q. Z. et al. Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean, wheat and barley. Plant Soil 339, 147–161 (2010).

    Article  CAS  Google Scholar 

  • 15.

    Klimek-Kopyra, A., Zaja¸c, T. & Re¸bilas, K. A mathematical model for the evaluation of cooperation and competition effects in intercrops. Eur. J. Agron. 51, 9–17 (2013).

    Article  Google Scholar 

  • 16.

    Li, L., Yang, S. C., Li, X. L., Zhang, F. S. & Christie, P. Interspecific complementary and competitive interactions between intercropped maize and faba bean. Plant Soil 212, 105–114 (1999).

    CAS  Article  Google Scholar 

  • 17.

    Bedoussac, L. & Justes, E. A comparison of commonly used indices for evaluating species interactions and intercrop efficiency: Application to durum wheat–winter pea intercrops. Field Crop Res. 124, 25–36 (2011).

    Article  Google Scholar 

  • 18.

    Hu, F. et al. Boosting system productivity through the improved coordination of interspecific competition in maize/pea strip intercropping. Field Crop Res. 198, 50–60 (2016).

    Article  Google Scholar 

  • 19.

    Andersen, M., Hauggaard-Nielsen, H., Weiner, J. & Jensen, E. Competitive dynamics in two- and three-component intercrops. J. Appl. Ecol. 44, 545–551 (2007).

    Article  Google Scholar 

  • 20.

    Li, L. et al. Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crop Res. 71, 173–181 (2001).

    Article  Google Scholar 

  • 21.

    Chai, Q., Qin, A., Gan, Y. & Yu, A. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agrono. Sustain. Dev. 34, 535–543 (2013).

    Article  CAS  Google Scholar 

  • 22.

    Hu, F. et al. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea. Plant Soil 412, 235–251 (2017).

    CAS  Article  Google Scholar 

  • 23.

    FAO/UNESCO. Soil Map of the World: Revised Legend/prepared by the Foodand Agriculture Organization of the United Nations. UNESCO (1988).

  • 24.

    Gan, Y. T. et al. Ridge-furrow mulching systems-an innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv. Agron. 118, 429–476 (2013).

    Article  Google Scholar 

  • 25.

    Yin, W. et al. Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment. Field Crop Res. 204, 42–51 (2017).

    Article  Google Scholar 

  • 26.

    Willey, R. W. & Rao, M. R. A. Competitive ratio for quantifying competition between intercrops. Exp. Agric. 16, 117–125 (1980).

    Article  Google Scholar 

  • 27.

    Fageria, N. K. & Baligar, V. C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 88, 97–185 (2005).

    CAS  Article  Google Scholar 

  • 28.

    Malézieux, E. et al. Mixing plant species in cropping systems: Concepts, tools and models. A review. Agrono. Sustain. Dev. 29, 43–62 (2009).

    Article  Google Scholar 

  • 29.

    Gómez-Rodrı́guez, O., Zavaleta-Mejı́a, E., González-Hernández, V. A., Livera-Muñoz, M. & Cárdenas-Soriano, E. Allelopathy and microclimatic modification of intercropping with marigold on tomato early blight disease development. Field Crop Res. 83, 27–34 (2003).

    Article  Google Scholar 

  • 30.

    Corre-Hellou, G., Fustec, J. & Crozat, Y. Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea–barley intercrops. Plant Soil 282, 195–208 (2006).

    CAS  Article  Google Scholar 

  • 31.

    Hauggaard-Nielsen, H., Ambus, P. & Jensen, E. S. The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutr. Cycl. Agroecosys. 65, 289–300 (2003).

    CAS  Article  Google Scholar 

  • 32.

    Andersen, M., Hauggaard-Nielsen, H., Ambus, P. & Jensen, E. Biomass production, symbiotic nitrogen fixation and inorganic N use in dual and tri-component annual intercrops. Plant Soil 266, 273–287 (2004).

    CAS  Article  Google Scholar 

  • 33.

    Hou, Z., Li, P., Li, B., Gong, J. & Wang, Y. Effects of fertigation scheme on N uptake and N use efficiency in cotton. Plant Soil 290, 115–126 (2007).

    CAS  Article  Google Scholar 

  • 34.

    Ghosh, P. K., Mohanty, M., Bandyopadhyay, K. K., Painuli, D. K. & Misra, A. K. Growth, competition, yields advantage and economics in soybean/pigeonpea intercropping system in semi-arid tropics of India. II. Effect of nutrient management. Field Crop Res 96, 90–97 (2006).

    Article  Google Scholar 

  • 35.

    Li, S. X., Wang, Z. H., Hu, T. T., Gao, Y. J. & Stewart, B. A. Nitrogen in dryland soils of China and its management. Adv. Agron. 101, 123–181 (2009).

    Article  Google Scholar 

  • 36.

    Hardarson, G., Zapata, F. & Danso, S. K. A. Effect of plant genotype and nitrogen fertilizer on symbiotic nitrogen fixation by soybean cultivars. Plant Soil 82, 397–405 (1984).

    CAS  Article  Google Scholar 

  • 37.

    Li, C. et al. The dynamic process of interspecific interactions of competitive nitrogen capture between intercropped wheat (Triticum aestivum L.) and Faba Bean (Vicia faba L.). PLoS ONE 9, e115804. https://doi.org/10.1371/journal.pone.0119659 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    Hauggaard-Nielsen, H. & Jensen, E. S. Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crop Res. 72, 185–196 (2001).

    Article  Google Scholar 

  • 39.

    Herridge, D. F., Peoples, M. B. & Boddey, R. M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1–18 (2008).

    CAS  Article  Google Scholar 

  • 40.

    Boucher, D. H. & Espinosa, M. J. Cropping system and growth and nodulation responses of beans to nitrogen in Tabasco, Mexico. Trop. Agric. 59, 279–282 (1982).

    Google Scholar 

  • 41.

    Jensen, E. S. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant Soil 182, 25–38 (1996).

    CAS  Article  Google Scholar 

  • 42.

    Gooding, M. J. et al. Intercropping with pulses to concentrate nitrogen and sulphur in wheat. J. Agric. Sci. 145, 469–479 (2007).

    CAS  Article  Google Scholar 

  • 43.

    Rusinamhodzi, L., Murwira, H. K. & Nyamangara, J. Cotton–cowpea intercropping and its N2 fixation capacity improves yield of a subsequent maize crop under Zimbabwean rain-fed conditions. Plant Soil 287, 327–336 (2006).

    CAS  Article  Google Scholar 

  • 44.

    Xiao, Y., Li, L. & Zhang, F. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques. Plant Soil 262, 45–54 (2004).

    CAS  Article  Google Scholar 

  • 45.

    Jamont, M., Piva, G. & Fustec, J. Sharing N resources in the early growth of rapeseed intercropped with faba bean: Does N transfer matter?. Plant Soil 371, 641–653 (2013).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Negative to positive shifts in diversity effects on soil nitrogen over time

    Fire-scarred fossil tree from the Late Triassic shows a pre-fire drought signal