in

Substantial blue carbon in overlooked Australian kelp forests

  • 1.

    Edenhofer, O. Climate Change 2014: Mitigation of Climate Change (Cambridge University Press, Cambridge, 2015).

    Google Scholar 

  • 2.

    Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Change 7, 220–226 (2017).

    ADS  Article  Google Scholar 

  • 3.

    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2. Front. Ecol. Environ. 9, 552–560 (2011).

    Article  Google Scholar 

  • 5.

    Alongi, D. M. Carbon cycling and storage in mangrove forests. Ann. Rev. Mar. Sci. 6, 195–219 (2014).

    Article  Google Scholar 

  • 6.

    Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 3998 (2019).

    ADS  Article  Google Scholar 

  • 7.

    Wernberg, T., Krumhansl, K., Filbee-Dexter, K. & Pedersen, M. Status and trends for the world’s kelp forests. In World Seas: An Environmental Evaluation (ed. Sheppard, C.) 57–78 (Elsevier, London, UK, 2019).

  • 8.

    Krause-Jensen, D. et al. Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. Biol. Lett. 14, 20180236 (2018).

    Article  Google Scholar 

  • 9.

    Howard, J. et al. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 15, 42–50 (2017).

    Article  Google Scholar 

  • 10.

    Krumhansl, K. & Scheibling, R. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467, 281–302 (2012).

    ADS  Article  Google Scholar 

  • 11.

    Hill, R. et al. Can macroalgae contribute to blue carbon? An Australian perspective. Limnol. Oceanogr. 60, 1689–1706 (2015).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Ortega, A. et al. Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 12, 748–754 (2019).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Wernberg, T. & Filbee-Dexter, K. Missing the marine forest for the trees. Mar. Ecol. Prog. Ser. 612, 209–215 (2019).

    ADS  Article  Google Scholar 

  • 14.

    Filbee-Dexter, K., Feehan, C. J. & Scheibling, R. E. Large-scale degradation of a kelp ecosystem in an ocean warming hotspot. Mar. Ecol. Prog. Ser. 543, 141–152 (2016).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Smale, D. A., Moore, P. J., Queirós, A. M., Higgs, N. D. & Burrows, M. T. Appreciating interconnectivity between habitats is key to blue carbon management. Front. Ecol. Environ. 16, 71–73 (2018).

    Article  Google Scholar 

  • 16.

    Filbee-Dexter, K., Wernberg, T., Ramirez-Llodra, E., Norderhaug, K. M. & Pedersen, M. F. Movement of pulsed resource subsidies from shallow kelp forests to deep fjords. Oecologia 187, 291–304 (2018).

    ADS  Article  Google Scholar 

  • 17.

    Queirós, A. M. et al. Connected macroalgal-sediment systems: blue carbon and food webs in the deep coastal ocean. Ecol. Monogr. https://doi.org/10.1002/ecm.1366 (2019).

    Article  Google Scholar 

  • 18.

    Kokubu, Y., Rothäusler, E., Filippi, J. B., Durieux, E. D. H. & Komatsu, T. Revealing the deposition of macrophytes transported offshore: evidence of their long-distance dispersal and seasonal aggregation to the deep sea. Sci. Rep. 9, 1–11 (2019).

    CAS  Article  Google Scholar 

  • 19.

    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Bennett, S. et al. The ‘Great Southern Reef’: social, ecological and economic value of Australia’s neglected kelp forests. Mar. Freshw. Res. https://doi.org/10.1071/MF15232 (2016).

    Article  Google Scholar 

  • 21.

    Serrano, O. et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 10, 4313 (2019).

    ADS  Article  Google Scholar 

  • 22.

    Fulton, C. J. et al. Sea temperature shapes seasonal fluctuations in seaweed biomass within the Ningaloo coral reef ecosystem. Limnol. Oceanogr. 59, 156–166 (2014).

    ADS  Article  Google Scholar 

  • 23.

    Coleman, M. A. & Wernberg, T. Forgotten underwater forests: The key role of fucoids on Australian temperate reefs. Ecol. Evol. 7, 8406–8418 (2017).

    Article  Google Scholar 

  • 24.

    Cresswell, A. K. et al. Translating local benthic community structure to national biogenic reef habitat types. Glob. Ecol. Biogeogr. 26, 1112–1125 (2017).

    Article  Google Scholar 

  • 25.

    Kennedy, H. et al. Seagrass sediments as a global carbon sink: isotopic constraints. Glob. Biogeochem. Cycles 24, GB4026. https://doi.org/10.1029/2010GB003848 (2010).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Boyer, K. E. & Fong, P. Macroalgal-mediated transfers of water column nitrogen to intertidal sediments and salt marsh plants. J. Exp. Mar. Biol. Ecol. 321, 59–69 (2005).

    CAS  Article  Google Scholar 

  • 27.

    Wernberg, T., Vanderklift, M. A., How, J. & Lavery, P. S. Export of detached macroalgae from reefs to adjacent seagrass beds. Oecologia 147, 692–701 (2006).

    ADS  Article  Google Scholar 

  • 28.

    Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A. & Hopkinson, C. S. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nat. Geosci. 12, 685–692 (2019).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Pedersen, M. F. et al. Detrital carbon production and export in high latitude kelp forests. Oecologia 1, 1–33. https://doi.org/10.1007/s00442-019-04573-z (2019).

    Article  Google Scholar 

  • 30.

    Chew, S. T. & Gallagher, J. B. Accounting for black carbon lowers estimates of blue carbon storage services. Sci. Rep. 8, 2553 (2018).

    ADS  Article  Google Scholar 

  • 31.

    Wernberg, T. et al. Biology and ecology of the globally significant kelp Ecklonia radiata. Mar. Biol. Annu. Rev. 57, 265–324 (2019).

  • 32.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science (80-). 353, 169–172 (2016).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Connell, S. et al. Recovering a lost baseline: missing kelp forests from a metropolitan coast. Mar. Ecol. Prog. Ser. 360, 63–72 (2008).

    ADS  Article  Google Scholar 

  • 34.

    Gaylard, S. The Health of Subtidal Reefs Along the Adelaide Metropolitan Coastline 1996–99 (Environment Protection Authority, Carlton, 2003).

    Google Scholar 

  • 35.

    Carnell, P. E. & Keough, M. J. Reconstructing historical marine populations reveals major decline of a kelp forest ecosystem in Australia. Estuaries Coasts 42, 765–778 (2019).

    Article  Google Scholar 

  • 36.

    Ling, S. D., Johnson, C. R., Ridgeway, K., Hobday, A. J. & Haddon, M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob. Change. Biol. 15, 719–731 (2009).

    ADS  Article  Google Scholar 

  • 37.

    Ling, S. & Keane, J. Resurvey of the longspined sea urchin (Centrostephanus rodgersii) and associated barren reef in Tasmania. Technical Report, University of Tasmania, https://eprints.utas.edu.au/28761/ (2018).

  • 38.

    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. USA 113, 13791–13796 (2016).

    Article  Google Scholar 

  • 39.

    Martínez, B. et al. Distribution models predict large contractions of habitat-forming seaweeds in response to ocean warming. Divers. Distrib. 24, 1350–1366 (2018).

    Article  Google Scholar 

  • 40.

    Coleman, M. A., Wood, G., Filbee-Dexter, K., Minne, A. J. P., Goold, V. et al.. Restore or redefine: future trajectories for restoration. Front. Mar. Sci. 7, 237. https://doi.org/10.3389/fmars.2020.00237 (2020).

    Article  Google Scholar 

  • 41.

    Layton, C., Coleman, M. A., Marzinelli, E. M., Steinberg, P. D., Swearer, S. E. et al. Kelp forest restoration in Australia. Front. Mar. Sci. 7, 237. https://doi.org/10.3389/fmars.2020.00074 (2020).

    Article  Google Scholar 

  • 42.

    Fredriksen, S. et al. Green gravel: a novel restoration tool to combat kelp forest decline. Sci. Rep. 10, 1–7 (2020).

    Article  Google Scholar 

  • 43.

    Marzinelli, E. M. et al. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests. PLoS ONE 10, e0118390. https://doi.org/10.1371/journal.pone.0118390. (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    Connell, S. D. & Irving, A. D. Integrating ecology with biogeography using landscape characteristics: a case study of subtidal habitat across continental Australia. J. Biogeogr. 35, 1608–1621 (2008).

    Article  Google Scholar 

  • 45.

    Wernberg, T., Coleman, M., Fairhead, A., Miller, S. & Thomsen, M. Morphology of Ecklonia radiata (Phaeophyta: Laminarales) along its geographic distribution in south-western Australia and Australasia. Mar. Biol. 143, 47–55 (2003).

    Article  Google Scholar 

  • 46.

    Staehr, P. A. & Wernberg, T. Physiological responses of Ecklonia radiata (Laminariales) to a latitudinal gradient in ocean temperature. J. Phycol. 45, 91–99 (2009).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Engineering superpowered organisms for a more sustainable world

    Letter from President Reif: Tackling the grand challenges of climate change