in

Successful post-glacial colonization of Europe by single lineage of freshwater amphipod from its Pannonian Plio-Pleistocene diversification hotspot

  • 1.

    Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276. https://doi.org/10.1006/bijl.1996.0035 (1996).

    Article  Google Scholar 

  • 2.

    Hewitt, G. M. Genetic consequences of climatic oscillations in the quaternary. Philos. Trans. R. Soc. B Biol. Sci. 359, 183–195. https://doi.org/10.1098/rstb.2003.1388 (2004).

    CAS  Article  Google Scholar 

  • 3.

    Patton, H. et al. Deglaciation of the Eurasian ice sheet complex. Quat. Sci. Rev. 169, 148–172. https://doi.org/10.1016/j.quascirev.2017.05.019 (2017).

    ADS  Article  Google Scholar 

  • 4.

    Hewitt, G. M. Postglacial re-colonisation of European biota. Biol. J. Linn. Soc. 68, 87–112 (1999).

    Article  Google Scholar 

  • 5.

    Sworobowicz, L. et al. Revisiting the phylogeography of Asellus aquaticus in Europe: insights into cryptic diversity and spatiotemporal diversification. Freshw. Biol. 60, 1824–1840. https://doi.org/10.1111/fwb.12613 (2015).

    Article  Google Scholar 

  • 6.

    Schmitt, T. & Varga, Z. Extra-Mediterranean refugia: the rule and not the exception?. Front. Zool. 9, 1–12. https://doi.org/10.1186/1742-9994-9-22 (2012).

    Article  Google Scholar 

  • 7.

    Verovnik, R., Sket, B. & Trontelj, P. The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Mol. Ecol. 14, 4355–4369. https://doi.org/10.1111/j.1365-294X.2005.02745.x (2005).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Sworobowicz, L., Mamos, T., Grabowski, M. & Wysocka, A. Lasting through the ice age: the role of the proglacial refugia in the maintenance of genetic diversity, population growth, and high dispersal rate in a widespread freshwater crustacean. Freshw. Biol. https://doi.org/10.1111/fwb.13487 (2020).

    Article  Google Scholar 

  • 9.

    Neumann, K. et al. Genetic spatial structure of European common hamsters (Cricetus cricetus)—a result of repeated range expansion and demographic bottlenecks. Mol. Ecol. 14, 1473–1483. https://doi.org/10.1111/j.1365-294X.2005.02519.x (2005).

    CAS  Article  PubMed  Google Scholar 

  • 10.

    Fussi, B., Lexer, C. & Heinze, B. Phylogeography of Populus alba (L.) and Populus tremula (L.) in Central Europe: secondary contact and hybridisation during recolonisation from disconnected refugia. Tree Genet. Genomes 6, 439–450. https://doi.org/10.1007/s11295-009-0262-5 (2010).

    Article  Google Scholar 

  • 11.

    Grabowski, M., Mamos, T., Bącela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. PeerJ 5, e3016. https://doi.org/10.7717/peerj.3016 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Hou, Z., Sket, B., Fiser, C. & Li, S. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proc. Natl. Acad. Sci. 108, 14533–14538. https://doi.org/10.1073/pnas.1104636108 (2011).

    ADS  Article  PubMed  Google Scholar 

  • 13.

    Mamos, T., Wattier, R., Burzyński, A. & Grabowski, M. The legacy of a vanished sea: a high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 795–810. https://doi.org/10.1111/mec.13499 (2016).

    Article  PubMed  Google Scholar 

  • 14.

    Perea, S. et al. Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evol. Biol. 10, 1–27. https://doi.org/10.1186/1471-2148-10-265 (2010).

    CAS  Article  Google Scholar 

  • 15.

    Saito, T. et al. Phylogeography of freshwater planorbid snails reveals diversification patterns in Eurasian continental islands. BMC Evol. Biol. https://doi.org/10.1186/s12862-018-1273-3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Utevsky, S. & Trontelj, P. Phylogeography of the southern medicinal leech, Hirudo verbana: a response to Živić et al. (2015). Aquat. Ecol. 50, 97–100. https://doi.org/10.1007/s10452-015-9553-0 (2016).

    CAS  Article  Google Scholar 

  • 17.

    Grabowski, M., Jażdżewski, K. & Konopacka, A. Alien crustacea in polish waters—Amphipoda. Aquat. Invas. 2, 25–38. https://doi.org/10.3391/ai.2007.2.1.3 (2007).

    Article  Google Scholar 

  • 18.

    Kontula, T. & Väinölä, R. Postglacial colonization of Northern Europe by distinct phylogeographic lineages of the bullhead, Cottus gobio. Mol. Ecol. 10, 1983–2002. https://doi.org/10.1046/j.1365-294X.2001.01328.x (2001).

    CAS  Article  PubMed  Google Scholar 

  • 19.

    Mateus, C. S., Almeida, P. R., Mesquita, N., Quintella, B. R. & Alves, M. J. European lampreys: new insights on postglacial colonization, gene flow and speciation. PLoS ONE 11, 1–22. https://doi.org/10.1371/journal.pone.0148107 (2016).

    CAS  Article  Google Scholar 

  • 20.

    Jażdżewski, K. Range extensions of some gammaridean species in European inland waters caused by human activity. 10–16 (1980).

  • 21.

    Bij de Vaate, A., Jażdżewski, K., Ketelaars, H. A. M., Gollasch, S. & Van der Velde, G. Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Can. J. Fish. Aquat. Sci. 59, 1159–1174. https://doi.org/10.1139/f02-098 (2002).

    Article  Google Scholar 

  • 22.

    Panov, V. E. et al. Assessing the risks of aquatic species invasions via European inland waterways: from concepts to environmental indicators. Integr. Environ. Assess. Manag. 5, 110–126. https://doi.org/10.1897/IEAM_2008-034.1 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 23.

    Väinölä, R. et al. Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 595, 241–255. https://doi.org/10.1007/s10750-007-9020-6 (2008).

    Article  Google Scholar 

  • 24.

    Weiss, M. & Leese, F. Widely distributed and regionally isolated! Drivers of genetic structure in Gammarus fossarum in a human-impacted landscape. BMC Evol. Biol. 16, 153. https://doi.org/10.1186/s12862-016-0723-z (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Weigand, A. M., Michler-Kozma, D., Kuemmerlen, M. & Jourdan, J. Substantial differences in genetic diversity and spatial structuring among (cryptic) amphipod species in a mountainous river basin. Freshw. Biol. 65, 1641–1656. https://doi.org/10.1111/fwb.13529 (2020).

    CAS  Article  Google Scholar 

  • 26.

    Rachalewski, M., Banha, F., Grabowski, M. & Anastácio, P. M. Ectozoochory as a possible vector enhancing the spread of an alien amphipod Crangonyx pseudogracilis. Hydrobiologia 717, 109–117. https://doi.org/10.1007/s10750-013-1577-7 (2013).

    Article  Google Scholar 

  • 27.

    Peck, S. B. Amphipod dispersal in the fur of aquatic mammals. Can. F. Nat. 89, 181–182 (1975).

    Google Scholar 

  • 28.

    Sainte-Marie, B. A review of the reproductive bionomics of aquatic gammaridean amphipods: variation of life history traits with latitude, depth, salinity and superfamily. Hydrobiologia 223, 189–227. https://doi.org/10.1007/BF00047641 (1991).

    Article  Google Scholar 

  • 29.

    Rewicz, T., Grabowski, M., MacNeil, C. & Bącela-Spychalska, K. The profile of a ‘perfect’ invader—the case of killer shrimp, Dikerogammarus villosus. Aquat. Invas. 9, 267–288. https://doi.org/10.3391/ai.2014.9.3.04 (2014).

    Article  Google Scholar 

  • 30.

    Vader, W. & Tandberg, A. H. S. Gammarid amphipods (Crustacea) in Norway, with a key to the species. Fauna Nor. 39, 12–25. https://doi.org/10.5324/fn.v39i0.2873 (2019).

    Article  Google Scholar 

  • 31.

    Macdonald, K. S., Yampolsky, L. & Duffy, J. E. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Mol. Phylogenet. Evol. 35, 323–343. https://doi.org/10.1016/j.ympev.2005.01.013 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 32.

    Grabowski, M., Wysocka, A. & Mamos, T. Molecular species delimitation methods provide new insight into taxonomy of the endemic gammarid species flock from the ancient Lake Ohrid. Zool. J. Linn. Soc. 181, 272–285. https://doi.org/10.1093/zoolinnean/zlw025 (2017).

    Article  Google Scholar 

  • 33.

    Jabłońska, A., Wrzesińska, W., Zawal, A., Pešić, V. & Grabowski, M. Long-term within-basin isolation patterns, different conservation units, and interspecific mitochondrial DNA introgression in an amphipod endemic to the ancient Lake Skadar system, Balkan Peninsula. Freshw. Biol. 65, 209–225. https://doi.org/10.1111/fwb.13414 (2020).

    CAS  Article  Google Scholar 

  • 34.

    Copilaş-Ciocianu, D. & Petrusek, A. The southwestern Carpathians as an ancient centre of diversity of freshwater gammarid amphipods: insights from the Gammarus fossarum species complex. Mol. Ecol. 24, 3980–3992. https://doi.org/10.1111/mec.13286 (2015).

    Article  PubMed  Google Scholar 

  • 35.

    Copilaş-Ciocianu, D. & Petrusek, A. Phylogeography of a freshwater crustacean species complex reflects a long-gone archipelago. J. Biogeogr. 44, 421–432. https://doi.org/10.1111/jbi.12853 (2017).

    Article  Google Scholar 

  • 36.

    Leuven, R. S. E. W. et al. The river Rhine: a global highway for dispersal of aquatic invasive species. Biol. Invas. 11, 1989–2008. https://doi.org/10.1007/s10530-009-9491-7 (2009).

    Article  Google Scholar 

  • 37.

    Kelly, D. W., Muirhead, J. R., Heath, D. D. & Macisaac, H. J. Contrasting patterns in genetic diversity following multiple invasions of fresh and brackish waters. Mol. Ecol. 15, 3641–3653. https://doi.org/10.1111/j.1365-294X.2006.03012.x (2006).

    CAS  Article  PubMed  Google Scholar 

  • 38.

    Panov, V. & Berezina, N. Invasive aquatic species of Europe. Distribution, impacts and management. Invas. Aquat. Species Eur. Distrib. Impacts Manag. https://doi.org/10.1007/978-94-015-9956-6 (2002).

    Article  Google Scholar 

  • 39.

    Csabai, Z. et al. Mass appearance of the Ponto-Caspian invader Pontogammarus robustoides in the River Tisza catchment: bypass in the southern invasion corridor?. Knowl. Manag. Aquat. Ecosyst. https://doi.org/10.1051/kmae/2020003 (2020).

    Article  Google Scholar 

  • 40.

    Rewicz, T., Wattier, R., Grabowski, M., Rigaud, T. & Bącela-Spychalska, K. Out of the Black sea: phylogeography of the invasive killer shrimp Dikerogammarus villosus across Europe. PLoS ONE 10, 1–20. https://doi.org/10.1371/journal.pone.0118121 (2015).

    CAS  Article  Google Scholar 

  • 41.

    Rewicz, T. et al. The killer shrimp, Dikerogammarus villosus, invading European Alpine Lakes: a single main source but independent founder events with an overall loss of genetic diversity. Freshw. Biol. 62, 1036–1051. https://doi.org/10.1111/fwb.12923 (2017).

    CAS  Article  Google Scholar 

  • 42.

    Jażdżewska, A. M. et al. Cryptic diversity and mtDNA phylogeography of the invasive demon shrimp, Dikerogammarus haemobaphes (Eichwald, 1841), in Europe. NeoBiota 57, 53–86. https://doi.org/10.3897/neobiota.57.46699 (2020).

    Article  Google Scholar 

  • 43.

    Jażdżewski, K. & Roux, A. L. Biogéographie de Gammarus roeseli Gervais en Europe, en particulier répartition en France et en Pologne (1988).

  • 44.

    Piscart, C. & Bollache, L. Crustacés amphipodes de surface : gammares d’eau douce.. Association Française de Limnologie, Introduction pratique à la systématique des organismes des eaux continentales de France (2012).

  • 45.

    Paganelli, D., Gazzola, A., Marchini, A. & Sconfietti, R. The increasing distribution of Gammarus roeselii Gervais, 1835: first record of the non-indigenous freshwater amphipod in the sub-lacustrine Ticino River basin (Lombardy, Italy). Bioinvas. Rec. 4, 37–41. https://doi.org/10.3391/bir.2015.4.1.06 (2015).

    Article  Google Scholar 

  • 46.

    Karaman, G. S. & Pinkster, S. Freshwater gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda) Part II. Gammarus roeseli-group and related species. Bijdragen tot de dierkunde 57, 207–260. https://doi.org/10.1163/26660644-05702005 (1977).

    Article  Google Scholar 

  • 47.

    Moret, Y., Bollache, L., Wattier, R. & Rigaud, T. Is the host or the parasite the most locally adapted in an amphipod-acanthocephalan relationship? A case study in a biological invasion context. Int. J. Parasitol. 37, 637–644. https://doi.org/10.1016/j.ijpara.2006.12.006 (2007).

    Article  PubMed  Google Scholar 

  • 48.

    Copilaş-Ciocianu, D., Borza, P. & Petrusek, A. Extensive variation in the morphological anti-predator defense mechanism of Gammarus roeselii Gervais, 1835 (Crustacea:Amphipoda). Freshw. Sci. 39, 47–55. https://doi.org/10.1086/707259 (2020).

    Article  Google Scholar 

  • 49.

    Miller, B. J., von der Heyden, S. & Gibbons, M. J. Significant population genetic structuring of the holoplanktic scyphozoan Pelagia noctiluca in the Atlantic Ocean. Afr. J. Mar. Sci. 34, 425–430. https://doi.org/10.2989/1814232X.2012.726646 (2012).

    Article  Google Scholar 

  • 50.

    Brown, W. M., George, M. Jr. & Wilson, A. C. Rapid evolution of animal mitochondrial DNA. Genetics 76, 1967–1971. https://doi.org/10.1002/(sici)1097-4555(199706)28:6%3c433::aid-jrs125%3e3.3.co;2-5 (1979).

    CAS  Article  Google Scholar 

  • 51.

    Kázmér, M. Birth, life and death of the Pannonian Lake. Palaeogeogr. Palaeoclimatol. Palaeoecol. 79, 171–188. https://doi.org/10.1016/0031-0182(90)90111-J (1990).

    Article  Google Scholar 

  • 52.

    Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112. https://doi.org/10.1006/bijl.1999.0332 (1999).

    Article  Google Scholar 

  • 53.

    Rudolph, K., Coleman, C. O., Mamos, T. & Grabowski, M. Description and post-glacial demography of Gammarus jazdzewskii sp. nov. (Crustacea: Amphipoda) from Central Europe. Syst. Biodivers. 16, 587–603. https://doi.org/10.1080/14772000.2018.1470118 (2018).

    Article  Google Scholar 

  • 54.

    Copilaş-Ciocianu, D., Fišer, C., Borza, P. & Petrusek, A. Is subterranean lifestyle reversible? Independent and recent large-scale dispersal into surface waters by two species of the groundwater amphipod genus Niphargus. Mol. Phylogenet. Evol. 119, 37–49. https://doi.org/10.1016/j.ympev.2017.10.023 (2018).

    Article  PubMed  Google Scholar 

  • 55.

    Antal, L. et al. Phylogenetic evidence for a new species of Barbus in the Danube River basin. Mol. Phylogenet. Evol. 96, 187–194. https://doi.org/10.1016/j.ympev.2015.11.023 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 56.

    Walker, M. J. C. Climatic changes in Europe during the last glacial/interglacial transition. Quat. Int. 28, 63–76. https://doi.org/10.1016/1040-6182(95)00030-M (1995).

    Article  Google Scholar 

  • 57.

    Pawłowski, D. et al. The response of flood-plain ecosystems to the Late Glacial and Early Holocene hydrological changes: a case study from a small Central European river valley. CATENA 147, 411–428. https://doi.org/10.1016/j.catena.2016.07.034 (2016).

    CAS  Article  Google Scholar 

  • 58.

    Notebaert, B. & Verstraeten, G. Sensitivity of West and Central European river systems to environmental changes during the Holocene: a review. Earth Sci. Rev. 103, 163–182. https://doi.org/10.1016/j.earscirev.2010.09.009 (2010).

    ADS  Article  Google Scholar 

  • 59.

    Gibling, M. R. River systems and the anthropocene: a late pleistocene and holocene timeline for human influence. Quaternary 1, 21. https://doi.org/10.3390/quat1030021 (2018).

    Article  Google Scholar 

  • 60.

    Gherardi, F. Biological invaders in inland waters: profiles, distribution, and threats. https://doi.org/10.1007/978-1-4020-6029-8 (2007).

  • 61.

    Jazdzewski, K., Konopacka, A. & Grabowski, M. Recent drastic changes in the gammarid fauna (Crustacea, Amphipoda) of the Vistula River deltaic system in Poland caused by alien invaders. Divers. Distrib. 10, 81–87. https://doi.org/10.1111/j.1366-9516.2004.00062.x (2004).

    Article  Google Scholar 

  • 62.

    Jourdan, J., Piro, K., Weigand, A. & Plath, M. Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. Front. Zool. 16, 29. https://doi.org/10.1186/s12983-019-0327-8 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Mauchart, P., Bereczki, C., Ortmann-Ajkai, A., Csabai, Z. & Szivák, I. Niche segregation between two closely related Gammarids (Crustacea, Amphipoda)—native vs. naturalised non-native species. Crustaceana 87, 1296–1314. https://doi.org/10.1163/15685403-00003355 (2014).

    Article  Google Scholar 

  • 64.

    Lagrue, C. et al. Interspecific differences in drift behaviour between the native Gammarus pulex and the exotic Gammarus roeseli and possible implications for the invader’s success. Biol. Invas. 13, 1409–1421. https://doi.org/10.1007/s10530-010-9899-0 (2011).

    Article  Google Scholar 

  • 65.

    Pöckl, M. & Humpesch, U. H. Intra- and inter-specific variations in egg survival and brood development time for Austrian populations of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda). Freshw. Biol. 23, 441–455. https://doi.org/10.1111/j.1365-2427.1990.tb00286.x (1990).

    Article  Google Scholar 

  • 66.

    Pöckl, M. Effects of temperature, age and body size on moulting and growth in the freshwater amphipods Gammarus fossarum and G. roeseli. https://doi.org/10.1111/j.1365-2427.1992.tb00534.x (1992).

  • 67.

    Pöckl, M. Reproductive potential and lifetime potential fecundity of the freshwater amphipods Gammarus fossarum and G. roeseli in Austrian streams and rivers. Freshw. Biol. 30, 73–91. https://doi.org/10.1111/j.1365-2427.1993.tb00790.x (1993).

    Article  Google Scholar 

  • 68.

    Pöckl, M., Webb, B. W. & Sutcliffe, D. W. Life history and reproductive capacity of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda) under naturally fluctuating water temperatures: a simulation study. Freshw. Biol. 48, 53–66. https://doi.org/10.1046/j.1365-2427.2003.00967.x (2003).

    Article  Google Scholar 

  • 69.

    Aguilera-Muñoz, F., Lafarga-Cruz, F. & Gallardo-Escárate, C. Molecular analysis in Chilean commercial gastropods based on 16S rRNA, COI and ITS1-5.8S rDNA-ITS2 sequences. Gayana (Concepción) 73, 17–27. https://doi.org/10.4067/s0717-65382009000100003 (2009).

    Article  Google Scholar 

  • 70.

    Alvarez, J. M. & Hoy, M. A. Evaluation of the ribosomal ITS2 DNA sequences in separating closely related populations of the Parasitoid Ageniaspis (Hymenoptera: Encyrtidae) article. Ann. Entomol. Soc. Am. https://doi.org/10.1603/0013-8746(2002)095 (2002).

    Article  Google Scholar 

  • 71.

    Wesson, D. M., McLain, D. K., Oliver, J. H., Piesman, J. & Collins, F. H. Investigation of the validity of species status of Ixodes dammini (Acari: Ixodidae) using rDNA. Proc. Natl. Acad. Sci. U. S. A. 90, 10221–10225. https://doi.org/10.1073/pnas.90.21.10221 (1993).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 72.

    Tang, J., Toè, L., Back, C. & Unnasch, T. R. Intra-specific heterogeneity of the rDNA internal transcribed spacer in the Simulium damnosum (Diptera: Simuliidae) complex. Mol. Biol. Evol. 13, 244–252. https://doi.org/10.1093/oxfordjournals.molbev.a025561 (1996).

    CAS  Article  PubMed  Google Scholar 

  • 73.

    Palandačić, A., Bravničar, J., Zupančić, P., Šanda, R. & Snoj, A. Molecular data suggest a multispecies complex of Phoxinus (Cyprinidae) in the Western Balkan Peninsula. Mol. Phylogenet. Evol. https://doi.org/10.1016/j.ympev.2015.05.024 (2015).

    Article  PubMed  Google Scholar 

  • 74.

    Vucić, M., Jelić, D., Žutinić, P., Grandjean, F. & Jelić, M. Distribution of Eurasian minnows (Phoxinus : Cypriniformes) in the Western Balkans. Knowl. Manag. Aquat. Ecosyst. 419, 11. https://doi.org/10.1051/kmae/2017051 (2018).

    Article  Google Scholar 

  • 75.

    Buj, I. et al. Peculiar occurrence of Cobitis bilineata Canestrini, 1865 and Sabanejewia larvata (De Filippi, 1859) (Cobitidae, Actinopteri) in the Danube River basin in Croatia. Fundam. Appl. Limnol. https://doi.org/10.1127/fal/2020/1272 (2020).

    Article  Google Scholar 

  • 76.

    Manning, J. T. Male discrimination and investment in Asellus aquaticus (L.) and A. meridianus Racovitsza (Crustacea: Isopoda). Behaviour 55(1–2), 1–14 (1975).

    CAS  Article  Google Scholar 

  • 77.

    Bollache, L. & Cézilly, F. Sexual selection on male body size and assortative pairing in Gammarus pulex (Crustacea: Amphipoda): field surveys and laboratory experiments. J. Zool. 264, 135–141. https://doi.org/10.1017/S0952836904005643 (2004).

    Article  Google Scholar 

  • 78.

    Cornet, S., Luquet, G. & Bollache, L. Influence of female moulting status on pairing decisions and size-assortative mating in amphipods. J. Zool. 286, 312–319. https://doi.org/10.1111/j.1469-7998.2011.00882.x (2012).

    Article  Google Scholar 

  • 79.

    Grabner, D. S. et al. Invaders, natives and their enemies: distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. Parasites Vectors https://doi.org/10.1186/s13071-015-1036-6 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 80.

    Karaman, G. S. & Pinkster, S. Freshwater gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda) Part I. Gammarus pulex—group and related species (1977).

  • 81.

    Karaman, G. S. & Pinkster, S. Freshwater gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda). Part III. Gammarus balcanicus—group and related species (1987).

  • 82.

    Hillis, D. M. & Moritz, C. Molecular Systematics (Sinauer Associates Inc., Sunderland, 1996).

    Google Scholar 

  • 83.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).

    CAS  Article  PubMed  Google Scholar 

  • 84.

    Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 85.

    Sequencher version 5.4.6 DNA sequence analysis software, Gene Codes Corporation, Ann Arbor, MI USA https://www.genecodes.com.

  • 86.

    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 87.

    Ratnasingham, S. & Hebert, P. D. N. The barcode of life data system. Mol. Ecol. Notes 7, 355–364. https://doi.org/10.1111/j.1471-8286.2006.01678.x (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 88.

    Bouckaert, R. et al. BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, 1–6. https://doi.org/10.1371/journal.pcbi.1003537 (2014).

    CAS  Article  Google Scholar 

  • 89.

    Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 1–11. https://doi.org/10.1186/s12862-017-0890-6 (2017).

    Article  Google Scholar 

  • 90.

    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.6. Available at https://beast.bio.ed.ac.uk/Tracer (2014).

  • 91.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 92.

    Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).

    Article  Google Scholar 

  • 93.

    Tajima, F. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. (1989).

  • 94.

    Fu, Y. X. New statistical tests of neutrality for DNA samples from a population. Genetics 143, 557–570 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 95.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).

    Article  PubMed  Google Scholar 

  • 96.

    Copilaş-Ciocianu, D., Grabowski, M., Parvulescu, L. & Petrusek, A. Zoogeography of epigean freshwater Amphipoda (Crustacea) in Romania: fragmented distributions and wide altitudinal variability. Zootaxa 3893, 243. https://doi.org/10.11646/zootaxa.3893.2.5 (2014).

    Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis

    Saudi Arabia faces increased heat, humidity, precipitation extremes by mid-century