in

Summer warming explains widespread but not uniform greening in the Arctic tundra biome

  • 1.

    Arctic Monitoring and Assessment Programme. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017 (Arctic Monitoring and Assessment Programme (AMAP), 2017).

  • 2.

    Chapin, F. S. 3rd et al. Role of land-surface changes in arctic summer warming. Science 310, 657–660 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Tape, K. D., Christie, K., Carroll, G. & O’donnell, J. A. Novel wildlife in the Arctic: the influence of changing riparian ecosystems and shrub habitat expansion on snowshoe hares. Glob. Change Biol. 22, 208–219 (2016).

    ADS  Google Scholar 

  • 4.

    Downing, A. & Cuerrier, A. A synthesis of the impacts of climate change on the First Nations and Inuit of Canada. Indian J. Tradit. Knowl. 10, 57–70 (2011).

    Google Scholar 

  • 5.

    National Academies of Sciences. Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop (The National Academies Press, 2019).

  • 6.

    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).

    ADS  Google Scholar 

  • 8.

    Gauthier, G. et al. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Philos. Trans. R. Soc. Ser. B 368, 20120482 (2013).

    Google Scholar 

  • 9.

    Myers-Smith, I. H. et al. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecol. Monogr. 89, e01351 (2019).

    Google Scholar 

  • 10.

    Tape, K. D., Hallinger, M., Welker, J. M. & Ruess, R. W. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15, 711–724 (2012).

    CAS  Google Scholar 

  • 11.

    Pattison, R. R., Jorgenson, J. C., Raynolds, M. K. & Welker, J. M. Trends in NDVI and Tundra Community Composition in the Arctic of NE Alaska Between 1984 and 2009. Ecosystems 18, 707–719 (2015).

    Google Scholar 

  • 12.

    Gamm, C. M. et al. Declining growth of deciduous shrubs in the warming climate of continental western Greenland. J. Ecol. 106, 640–654 (2018).

    CAS  Google Scholar 

  • 13.

    Forchhammer M. Sea-ice induced growth decline in Arctic shrubs. Biol. Lett. 13, 20170122 (2017).

  • 14.

    Street, L., Shaver, G., Williams, M. & Van Wijk, M. What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems? J. Ecol. 95, 139–150 (2007).

    Google Scholar 

  • 15.

    Raynolds, M. K., Walker, D. A., Epstein, H. E., Pinzon, J. E. & Tucker, C. J. A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sens. Lett. 3, 403–411 (2012).

    Google Scholar 

  • 16.

    Berner, L. T., Jantz, P., Tape, K. D. & Goetz, S. J. Tundra plant aboveground biomass and shrub dominance mapped across the North Slope of Alaska. Environ. Res. Lett. 13, 035002 (2018).

    ADS  Google Scholar 

  • 17.

    Bhatt, U. S. et al. Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environ. Res. Lett. 12, 1–18 (2017).

    Google Scholar 

  • 18.

    Guay, K. C. et al. Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment. Glob. Change Biol. 20, 3147–3158 (2014).

    ADS  Google Scholar 

  • 19.

    Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

    ADS  Google Scholar 

  • 20.

    Ju, J. & Masek, J. G. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens. Environ. 176, 1–16 (2016).

    ADS  Google Scholar 

  • 21.

    Karlsen, S. R., Anderson, H. B., Van der Wal, R. & Hansen, B. B. A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity. Environ. Res. Lett. 13, 025011 (2018).

    ADS  Google Scholar 

  • 22.

    McManus, kM. et al. Satellite-based evidence for shrub and graminoid tundra expansion in northern Quebec from 1986 to 2010. Glob. Change Biol. 18, 2313–2323 (2012).

    ADS  Google Scholar 

  • 23.

    Frost, G. V., Epstein, H. & Walker, D. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra. Environ. Res. Lett. 9, 025004 (2014).

    ADS  Google Scholar 

  • 24.

    Raynolds, M. K. & Walker, D. A. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011. Environ. Res. Lett. 11, 085004 (2016).

    ADS  Google Scholar 

  • 25.

    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    ADS  Google Scholar 

  • 26.

    Zhu, Z., Wang, S. & Woodcock, C. E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 159, 269–277 (2015).

    ADS  Google Scholar 

  • 27.

    Pastick, N. J. et al. Spatiotemporal remote sensing of ecosystem change and causation across Alaska. Glob. Change Biol. 25, 1171–1189 (2019).

    ADS  Google Scholar 

  • 28.

    Walker, D. et al. Phytomass, LAI, and NDVI in northern Alaska: relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. J. Geophys. Res. 108, 8169 (2003).

    Google Scholar 

  • 29.

    Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296, 1687–1689 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • 30.

    Fraser, R. H., Lantz, T. C., Olthof, I., Kokelj, S. V. & Sims, R. A. Warming-induced shrub expansion and lichen decline in the Western Canadian. Arct. Ecosyst. 17, 1151–1168 (2014).

    Google Scholar 

  • 31.

    Bonney, M. T., Danby, R. K. & Treitz, P. M. Landscape variability of vegetation change across the forest to tundra transition of central Canada. Remote Sens. Environ. 217, 18–29 (2018).

    ADS  Google Scholar 

  • 32.

    Cuerrier, A., Brunet, N. D., Gérin-Lajoie, J., Downing, A. & Lévesque, E. The study of Inuit knowledge of climate change in Nunavik, Quebec: a mixed methods approach. Hum. Ecol. 43, 379–394 (2015).

    Google Scholar 

  • 33.

    Forbes, B. C. & Stammler, F. Arctic climate change discourse: the contrasting politics of research agendas in the West and Russia. Polar Res. 28, 28–42 (2009).

    Google Scholar 

  • 34.

    Forbes, B. C., Fauria, M. M. & Zetterberg, P. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Glob. Change Biol. 16, 1542–1554 (2010).

    ADS  Google Scholar 

  • 35.

    Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).

    ADS  Google Scholar 

  • 36.

    Ropars, P. & Boudreau, S. Shrub expansion at the forest–tundra ecotone: spatial heterogeneity linked to local topography. Environ. Res. Lett. 7, 015501 (2012).

    ADS  Google Scholar 

  • 37.

    Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).

    ADS  Google Scholar 

  • 38.

    Park, T. et al. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett. 11, 084001 (2016).

    ADS  Google Scholar 

  • 39.

    Riihimäki, H., Heiskanen, J. & Luoto, M. The effect of topography on arctic-alpine aboveground biomass and NDVI patterns. Int. J. Appl. Earth Obs. Geoinf. 56, 44–53 (2017).

    ADS  Google Scholar 

  • 40.

    Fraser, R. H., Olthof, I., Lantz, T. C. & Schmitt, C. UAV photogrammetry for mapping vegetation in the low-Arctic. Arct. Sci. 2, 79–102 (2016).

    Google Scholar 

  • 41.

    Berner, L. T., Beck, P. S. A., Bunn, A. G. & Goetz, S. J. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Glob. Change Biol. 19, 3449–3462 (2013).

    Google Scholar 

  • 42.

    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).

    ADS  Google Scholar 

  • 43.

    Bjorkman, A. D., Vellend, M., Frei, E. R. & Henry, G. H. Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic. Glob. Change Biol. 23, 1540–1551 (2017).

    ADS  Google Scholar 

  • 44.

    Post, E. & Pedersen, C. Opposing plant community responses to warming with and without herbivores. Proc. Natl Acad. Sci. USA 105, 12353–12358 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 45.

    Yu, Q., Epstein, H., Engstrom, R. & Walker, D. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory. Glob. Change Biol. 23, 3895–3907 (2017).

    ADS  Google Scholar 

  • 46.

    Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).

    ADS  CAS  Google Scholar 

  • 47.

    Perreault, N., Levesque, E., Fortier, D. & Lamarque, L. J. Thermo-erosion gullies boost the transition from wet to mesic tundra vegetation. Biogeosciences 13, 1237–1253 (2016).

    ADS  Google Scholar 

  • 48.

    Grant, R. F., Mekonnen, Z. A., Riley, W. J., Arora, B. & Torn, M. S. Mathematical modelling of Arctic Polygonal Tundra with Ecosys: 2. Microtopography determines how CO2 and CH4 exchange responds to changes in temperature and precipitation. J. Geophys. Res. 122, 3174–3187 (2017).

    CAS  Google Scholar 

  • 49.

    Phoenix, G. K. & Bjerke, J. W. Arctic browning: extreme events and trends reversing arctic greening. Glob. Change Biol. 22, 2960–2962 (2016).

    ADS  Google Scholar 

  • 50.

    Treharne, R., Bjerke, J. W., Tømmervik, H., Stendardi, L. & Phoenix, G. K. Arctic browning: Impacts of extreme climatic events on heathland ecosystem CO2 fluxes. Glob. Change Biol. 25, 489–503 (2018).

    ADS  Google Scholar 

  • 51.

    Forbes, B. C. et al. High resilience in the Yamal-Nenets social–ecological system, west Siberian Arctic, Russia. Proc. Natl Acad. Sci. USA 106, 22041–22048 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 52.

    Mekonnen, Z. A., Riley, W. J. & Grant, R. F. Accelerated nutrient cycling and increased light competition will lead to 21st century shrub expansion in North American Arctic tundra. J. Geophys. Res. 123, 1683–1701 (2018).

    CAS  Google Scholar 

  • 53.

    Rocha, A. V. et al. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environ. Res. Lett. 7, 044039 (2012).

    ADS  Google Scholar 

  • 54.

    Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L. & Justice, C. O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72–85 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Hu, F. S. et al. Arctic tundra fires: natural variability and responses to climate change. Front. Ecol. Environ. 13, 369–377 (2015).

    Google Scholar 

  • 56.

    Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475, 489–492 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 57.

    Jones, B. M. et al. Identification of unrecognized tundra fire events on the north slope of Alaska. J. Geophys. Res. 118, 1334–1344 (2013).

    Google Scholar 

  • 58.

    Loranty, M. M. et al. Siberian tundra ecosystem vegetation and carbon stocks four decades after wildfire. J. Geophys. Res. 119, 2144–2154 (2014).

    CAS  Google Scholar 

  • 59.

    Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 9, 852–857 (2019).

    ADS  CAS  Google Scholar 

  • 60.

    Schuur, E. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 61.

    Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).

    ADS  Google Scholar 

  • 62.

    Loranty, M. M., Goetz, S. J. & Beck, P. S. A. Tundra vegetation effects on pan-Arctic albedo. Environ. Res. Lett. 6, 024014 (2011).

    ADS  Google Scholar 

  • 63.

    Loranty, M. M. et al. Reviews and syntheses: changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, 5287–5313 (2018).

    ADS  CAS  Google Scholar 

  • 64.

    Tape, K. D., Gustine, D. D., Ruess, R. W., Adams, L. G. & Clark, J. A. Range expansion of moose in Arctic Alaska linked to warming and increased shrub habitat. PLoS ONE 11, e0152636 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 65.

    Tape, K. D., Jones, B. M., Arp, C. D., Nitze, I. & Grosse, G. Tundra be dammed: beaver colonization of the Arctic. Glob. Change Biol. 24, 4478–4488 (2018).

    ADS  Google Scholar 

  • 66.

    Joly, K., Jandt, R. R. & Klein, D. R. Decrease of lichens in Arctic ecosystems: the role of wildfire, caribou, reindeer, competition and climate in north‐western Alaska. Polar Res. 28, 433–442 (2009).

    Google Scholar 

  • 67.

    Macias-Fauria, M., Forbes, B. C., Zetterberg, P. & Kumpula, T. Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems. Nat. Clim. Change 2, 613–618 (2012).

    ADS  Google Scholar 

  • 68.

    Wesche, S. D. & Chan, H. M. Adapting to the impacts of climate change on food security among Inuit in the Western Canadian Arctic. EcoHealth 7, 361–373 (2010).

    PubMed  Google Scholar 

  • 69.

    Kuhnlein, H. V. & Chan, H. M. Environment and contaminants in traditional food systems of northern indigenous peoples. Annu. Rev. Nutr. 20, 595–626 (2000).

    CAS  PubMed  Google Scholar 

  • 70.

    Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).

    ADS  Google Scholar 

  • 71.

    Virtanen, R. et al. Where do the treeless tundra areas of northern highlands fit in the global biome system: toward an ecologically natural subdivision of the tundra biome. Ecol. Evol. 6, 143–158 (2016).

    PubMed  Google Scholar 

  • 72.

    Masek, J. G. et al. A Landsat surface reflectance dataset for North America, 1990-2000. IEEE Geosci. Remote Sens. Lett. 3, 68–72 (2006).

    ADS  Google Scholar 

  • 73.

    Vermote, E., Justice, C., Claverie, M. & Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 185, 46–56 (2016).

    ADS  PubMed  Google Scholar 

  • 74.

    Python Software Foundation. Python Language Software Version 3.7.3. https://www.python.org/ (2020).

  • 75.

    Foga, S. et al. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 194, 379–390 (2017).

    ADS  Google Scholar 

  • 76.

    Roy, D. P. et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 185, 57–70 (2016).

    ADS  PubMed  Google Scholar 

  • 77.

    Sulla-Menashe, D., Friedl, M. A. & Woodcock, C. E. Sources of bias and variability in long-term Landsat time series over Canadian boreal forests. Remote Sens. Environ. 177, 206–219 (2016).

    ADS  Google Scholar 

  • 78.

    Liaw, A. & Wiener, M. Classification and Regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  • 79.

    Wright, M. N. & Ziegler, A. Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).

    Google Scholar 

  • 80.

    Melaas, E. K. et al. Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat. Remote Sens. Environ. 186, 452–464 (2016).

    ADS  Google Scholar 

  • 81.

    Markham, B. L. & Helder, D. L. Forty-year calibrated record of earth-reflected radiance from Landsat: a review. Remote Sens. Environ. 122, 30–40 (2012).

    ADS  Google Scholar 

  • 82.

    Markham, B. et al. Landsat-8 operational land imager radiometric calibration and stability. Remote Sens. 6, 12275–12308 (2014).

    ADS  Google Scholar 

  • 83.

    Kendall, M. G. Rank Correlation Methods 4th edn (Charles Griffin, 1975).

  • 84.

    Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    MathSciNet  MATH  Google Scholar 

  • 85.

    Bronaugh, D. & Werner, A. zyp: Zhang + Yue-Pilon Trends Package. R Package Version 0.10-1.1. https://CRAN.R-project.org/package=zyp (2012).

  • 86.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • 87.

    Rohde, R. et al. A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinform. Geostat. 7, https://doi.org/10.4172/2327-4581.1000101 (2013).

  • 88.

    Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    ADS  Google Scholar 

  • 89.

    Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

    ADS  Google Scholar 

  • 90.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Google Scholar 

  • 91.

    Willmott, C. J. & Matsuura, K. Terrestrial Air Temperature and Precipitation: Monthly Time Series (1900–2017) v. 5.01. http://climate.geog.udel.edu/~climate (University of Deleware, 2018).

  • 92.

    Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001).

    MATH  Google Scholar 

  • 93.

    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 94.

    Obu, J. et al. ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost Extent for the Northern Hemisphere, v1.0. https://doi.org/10.5285/c7590fe40d8e44169d511c70a60ccbcc (Centre for Environmental Data Analysis, 2019).

  • 95.

    Obu, J. et al. ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost Ground Temperature for the Northern Hemisphere, v1.0. https://doi.org/10.5285/c7590fe40d8e44169d511c70a60ccbcc (Centre for Environmental Data Analysis, 2019).

  • 96.

    Obu, J. et al. ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost Active Layer Thickness for the Northern Hemisphere, v1.0. https://doi.org/10.5285/1ee56c42cf6c4ef698693e00a63795f4 (Centre for Environmental Data Analysis, 2019).

  • 97.

    Olefeldt, D. et al. Arctic Circumpolar Distribution and Soil Carbon of Thermokarst Landscapes. https://doi.org/10.3334/ORNLDAAC/1332 (ORNL DAAC, 2015).

  • 98.

    Defourny, P. et al. Land Cover Climate Change Initiative—Product User Guide Version v2. http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (European Space Agency, 2017).

  • 99.

    Rizzoli, P. et al. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. Remote Sens. 132, 119–139 (2017).

    ADS  Google Scholar 

  • 100.

    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Google Scholar 

  • 101.

    Greenwell, B. M. pdp: an R package for constructing partial dependence plots. R. J. 9, 421–436 (2017).

    Google Scholar 

  • 102.

    Le Moullec, M., Buchwal, A., Wal, R., Sandal, L. & Hansen, B. B. Annual ring growth of a widespread high arctic shrub reflects past fluctuations in community-level plant biomass. J. Ecol. 107, 436–451 (2019).

    Google Scholar 

  • 103.

    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).

    Google Scholar 

  • 104.

    Euskirchen, E., Bret-Harte, M. S., Scott, G., Edgar, C. & Shaver G. R. Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska. Ecosphere 3, https://doi.org/10.1890/ES1811-00202.00201 (2012).

  • 105.

    Euskirchen, E. S. et al. Interannual and seasonal patterns of carbon dioxide, water, and energy fluxes from ecotonal and thermokarst-impacted ecosystems on carbon-rich permafrost soils in Northeastern Siberia. J. Geophys. Res. 122, 2651–2668 (2017).

    CAS  Google Scholar 

  • 106.

    Baldocchi, D. et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434 (2001).

    ADS  Google Scholar 

  • 107.

    Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).

    ADS  Google Scholar 

  • 108.

    Hijmans, R. J. raster: Geographic Analysis and Modeling. R package version 3.0-12. http://CRAN.R-project.org/package=raster (2019).

  • 109.

    Bivand, R., Keitt, T. & Rowlingson B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R Package Version 1.4-8. https://CRAN.R-project.org/package=rgdal (2019).

  • 110.

    Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R Package Version 0.9.9. https://CRAN.R-project.org/package=maptools (2019).

  • 111.

    Dawle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’. R Package Version 1.12.8. https://CRAN.R-project.org/package=data.table (2019).

  • 112.

    Wickham, H. & Francois, R. dplyr: A Grammar of Data Manipulation. R Package Version 0.8.5. https://CRAN.R-project.org/package=dplyr (2015).

  • 113.

    Wickham, H. & Henry, L. tidyr: Tidy Messy Data. R Package Version 1.0.2. https://CRAN.R-project.org/package=tidyr (2020).

  • 114.

    Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, 2008).

  • 115.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).

  • 116.

    Kassambara, A. ggpubr: ‘ggplot2’ Basde Publication Ready Plots. R Package Version 0.2.5. https://CRAN.R-project.org/package=ggpubr (2020).


  • Source: Ecology - nature.com

    Evaluating battery revenues for offshore wind farms using advanced modeling

    Phytoliths in selected broad-leaved trees in China