Surface cooling caused by rare but intense near-inertial wave induced mixing in the tropical Atlantic

  • 1.

    Chang, P. et al. Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon. Nat. Geosci. 1, 444 (2008).

    ADS  CAS  Google Scholar 

  • 2.

    Kushnir, Y., Robinson, W. A., Chang, P. & Robertson, A. W. The physical basis for predicting Atlantic sector seasonal-to-interannual climate variability. J. Clim. 19, 5949–5970 (2006).

    ADS  Google Scholar 

  • 3.

    Brandt, P. et al. Equatorial upper-ocean dynamics and their interaction with the West African monsoon. Atmos. Sci. Lett. 12, 24–30 (2011).

    ADS  Google Scholar 

  • 4.

    Sultan, B. & Janicot, S. Abrupt shift of the ITCZ over West Africa and intra-seasonal variability. Geophys. Res. Lett. 27, 3353–3356 (2000).

    ADS  Google Scholar 

  • 5.

    Liebmann, B. & Mechoso, C. R. The South American Monsoon System. In The Global Monsoon System: Research and Forecast 2nd edn, (eds Chang, C.‐P. et al.) Ch. 8, pp. 137–157, (World Scientific Publishing, 2010).

  • 6.

    Nobre, P. & Shukla, J. Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Clim. 9, 2464–2479 (1996).

    ADS  Google Scholar 

  • 7.

    Foltz, G. R. et al. The Tropical Atlantic Observing System. Front. Mar. Sci. 6, 206 (2019).

    ADS  Google Scholar 

  • 8.

    Jochum, M. et al. The impact of oceanic near-inertial waves on climate. J. Clim. 26, 2833–2844 (2013).

    ADS  Google Scholar 

  • 9.

    Johns, W. E., Brandt, P. & Chang, P. Tropical Atlantic variability and coupled model climate biases: results from the Tropical Atlantic Climate Experiment (TACE). Clim. Dyn. 43, 2887–2887 (2014).

    Google Scholar 

  • 10.

    Toniazzo, T. & Woolnough, S. Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts. Clim. Dyn. 43, 2889–2913 (2014).

    Google Scholar 

  • 11.

    Zuidema, P. et al. Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific Oceans: the U.S. CLIVAR Eastern Tropical Oceans Synthesis Working Group. Bull. Am. Meteorol. Soc. 97, 2305–2328 (2016).

    ADS  Google Scholar 

  • 12.

    Dutkiewicz, S., Hickman, A. E. & Jahn, O. Modelling ocean-colour-derived chlorophyll a. Biogeosciences 15, 613–630 (2018).

    ADS  CAS  Google Scholar 

  • 13.

    Siegel, D. A. et al. Solar radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool. J. Geophys. Res. 100, 4885–4891 (1995).

    ADS  Google Scholar 

  • 14.

    Strutton, P. G. & Chavez, F. P. Biological heating in the equatorial Pacific: observed variability and potential for real-time calculation. J. Clim. 17, 1097–1109 (2004).

    ADS  Google Scholar 

  • 15.

    Bourlès, B. et al. PIRATA: a sustained observing system for tropical Atlantic climate research and forecasting. Earth Space Sci. 6, 577–616 (2019).

    ADS  Google Scholar 

  • 16.

    Foltz, G. R., Grodsky, S. A., Carton, J. A. & McPhaden, M. J. Seasonal mixed layer heat budget of the tropical Atlantic Ocean. J. Geophys. Res. 108, 3146 (2003).

    ADS  Google Scholar 

  • 17.

    Foltz, G. R., Schmid, C. & Lumpkin, R. Seasonal cycle of the mixed layer heat budget in the northeastern tropical Atlantic ocean. J. Clim. 26, 8169–8188 (2013).

    ADS  Google Scholar 

  • 18.

    Foltz, G. R., Schmid, C. & Lumpkin, R. An enhanced PIRATA dataset for tropical Atlantic ocean–atmosphere research. J. Clim. 31, 1499–1524 (2018).

    ADS  Google Scholar 

  • 19.

    Hummels, R., Dengler, M. & Bourles, B. Seasonal and regional variability of upper ocean diapycnal heat flux in the Atlantic cold tongue. Prog. Oceanogr. 111, 52–74 (2013).

    ADS  Google Scholar 

  • 20.

    Hummels, R., Dengler, M., Brandt, P. & Schlundt, M. Diapycnal heat flux and mixed layer heat budget within the Atlantic Cold Tongue. Clim. Dyn. 43, 3179–3199 (2014).

    Google Scholar 

  • 21.

    Wade, M. et al. A one-dimensional modeling study of the diurnal cycle in the equatorial Atlantic at the PIRATA buoys during the EGEE-3 campaign. Ocean Dyn. 61, 1–20 (2011).

    ADS  Google Scholar 

  • 22.

    Wade, M., Caniaux, G. & Du Penhoat, Y. Variability of the mixed layer heat budget in the eastern equatorial Atlantic during 2005–2007 as inferred using Argo floats. J. Geophys. Res. 116, 17 (2011).

    Google Scholar 

  • 23.

    McPhaden, M. J., Cronin, M. F. & McClurg, D. C. Meridional structure of the seasonally varying mixed layer temperature balance in the eastern Tropical Pacific. J. Clim. 21, 3240–3260 (2008).

    ADS  Google Scholar 

  • 24.

    Moum, J. N., Perlin, A., Nash, J. D. & McPhaden, M. J. Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing. Nature 500, 64 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 25.

    Schlundt, M. et al. Mixed layer heat and salinity budgets during the onset of the 2011 Atlantic cold tongue. J. Geophys. Res. 119, 7882–7910 (2014).

    ADS  Google Scholar 

  • 26.

    Smyth, W. D., Moum, J. N., Li, L. & Thorpe, S. A. Diurnal shear instability, the descent of the surface shear layer, and the deep cycle of equatorial turbulence. J. Phys. Oceanogr. 43, 2432–2455 (2013).

    ADS  Google Scholar 

  • 27.

    Giordani, H., Caniaux, G. & Voldoire, A. Intraseasonal mixed-layer heat budget in the equatorial Atlantic during the cold tongue development in 2006. J. Geophys. Res. 118, 650–671 (2013).

    ADS  Google Scholar 

  • 28.

    Huang, B., Xue, Y., Zhang, D., Kumar, A. & McPhaden, M. J. The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J. Clim. 23, 4901–4925 (2010).

    ADS  Google Scholar 

  • 29.

    Jouanno, J., Marin, F., du Penhoat, Y., Sheinbaum, J. & Molines, J.-M. Seasonal heat balance in the upper 100 m of the equatorial Atlantic Ocean. J. Geophys. Res. 116, C09003 (2011).

    ADS  Google Scholar 

  • 30.

    Pham, H. T., Sarkar, S. & Winters, K. B. Large-eddy simulation of deep-cycle turbulence in an equatorial undercurrent model. J. Phys. Oceanogr. 43, 2490–2502 (2013).

    ADS  Google Scholar 

  • 31.

    Pham, H. T., Smyth, W. D., Sarkar, S. & Moum, J. N. Seasonality of deep cycle turbulence in the eastern equatorial Pacific. J. Phys. Oceanogr. 47, 2189–2209 (2017).

    ADS  Google Scholar 

  • 32.

    Brandt, P. et al. On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic. Biogeosciences 12, 489–512 (2015).

    ADS  Google Scholar 

  • 33.

    MacKinnon, J. A. et al. Climate process team on internal wave–driven ocean mixing. Bull. Am. Meteorol. Soc. 98, 2429–2454 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Alford, M. H., MacKinnon, J. A., Simmons, H. L. & Nash, J. D. Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci. 8, 95–123 (2016).

    ADS  Google Scholar 

  • 35.

    Pollard, R. T. & Millard, R. C. Comparison between observed and simulated wind-generated inertial oscillations. Deep Sea Res. Oceanogr. Abstr. 17, 813–821 (1970).

    ADS  Google Scholar 

  • 36.

    Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200 (1998).

    CAS  PubMed  Google Scholar 

  • 37.

    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701 (2013).

    ADS  CAS  Google Scholar 

  • 38.

    Schafstall, J., Dengler, M., Brandt, P. & Bange, H. Tidal-induced mixing and diapycnal nutrient fluxes in the Mauritanian upwelling region. J. Geophys. Res. 115, C10014 (2010).

    ADS  Google Scholar 

  • 39.

    Peters, H., Gregg, M. C. & Toole, J. M. On the parameterization of equatorial turbulence. J. Geophys. Res. 93, 1199–1218 (1988).

    ADS  Google Scholar 

  • 40.

    Leaman, K. D. & Sanford, T. B. Vertical energy propagation of inertial waves: a vector spectral analysis of velocity profiles. J. Geophys. Res. (1896–1977) 80, 1975–1978 (1975).

    ADS  Google Scholar 

  • 41.

    Thorpe, S. A. Turbulence and mixing in a Scottish Loch. Philos. Trans. R. Soc. Lond. Ser. A 286, 125–181 (1977).

    ADS  Google Scholar 

  • 42.

    Fischer, T. Microstructure Measurements during METEOR Cruise M119, PANGAEA, (2020).

  • 43.

    Ozmidov, R. V. On the turbulent exchange in a stably stratified ocean. Izv. Acad. Sci. USSR Atmos. Ocean Phys., 1, 861–871 (1965).

    Google Scholar 

  • 44.

    Smyth, W. D. & Moum, J. N. Ocean mixing by Kelvin–Helmholtz instability. Oceanography 25, 140–149 (2012).

    Google Scholar 

  • 45.

    Kraus, E. B. & Turner, J. S. A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus 19, 98–106 (1967).

    ADS  Google Scholar 

  • 46.

    Plueddemann, A. J. & Farrar, J. T. Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep Sea Res. Part II 53, 5–30 (2006).

    ADS  Google Scholar 

  • 47.

    Large, W. G. & Pond, S. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 11, 324–336 (1981).

    ADS  Google Scholar 

  • 48.

    Donelan, M. A. et al. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 31, L18306 (2004).

    ADS  Google Scholar 

  • 49.

    D’Asaro, E. A. The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr. 15, 1043–1059 (1985).

    ADS  Google Scholar 

  • 50.

    Atlas, R. et al. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Am. Meteorol. Soc. 92, 157–174 (2011).

    ADS  Google Scholar 

  • 51.

    Wentz, F. et al. Remote Sensing Systems Cross-calibrated Multi-platform (CCMP) 6-hourly Ocean Vector Wind Analysis Product on 0.25 deg Grid, Version 2.0 (Remote Sensing Systems, Santa Rosa, CA, Google Scholar, 2015).

  • 52.

    Moisan, J. R. & Niiler, P. P. The seasonal heat budget of the North Pacific: net heat flux and heat storage rates (1950–1990). J. Phys. Oceanogr. 28, 401–421 (1998).

    ADS  Google Scholar 

  • 53.

    Stevenson, J. W. & Niiler, P. P. Upper ocean heat budget during the Hawaii-to-Tahiti shuttle experiment. J. Phys. Oceanogr. 13, 1894–1907 (1983).

    ADS  Google Scholar 

  • 54.

    Belanger, J. I., Jelinek, M. T. & Curry, J. A. A climatology of easterly waves in the tropical Western Hemisphere. Geosci. Data J. 3, 40–49 (2016).

    ADS  Google Scholar 

  • 55.

    Burpee, R. W. The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci. 29, 77–90 (1972).

    ADS  Google Scholar 

  • 56.

    Carlson, T. N. Synoptic histories of three African disturbances that developed into Atlantic hurricanes. Mon. Weather Rev. 97, 256–276 (1969).

    ADS  Google Scholar 

  • 57.

    Pytharoulis, I. & Thorncroft, C. The low-level structure of African easterly waves in 1995. Mon. Weather Rev. 127, 2266–2280 (1999).

    ADS  Google Scholar 

  • 58.

    Kiladis, G. N., Thorncroft, C. D. & Hall, N. M. J. Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci. 63, 2212–2230 (2006).

    ADS  Google Scholar 

  • 59.

    Thorncroft, C. & Hodges, K. African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Clim. 14, 1166–1179 (2001).

    ADS  Google Scholar 

  • 60.

    Mickett, J. B., Serra, Y. L., Cronin, M. F. & Alford, M. H. Resonant forcing of mixed layer inertial motions by atmospheric easterly waves in the northeast tropical Pacific. J. Phys. Oceanogr. 40, 401–416 (2010).

    ADS  Google Scholar 

  • 61.

    Wu, M.-L. C., Reale, O., Schubert, S. D., Suarez, M. J. & Thorncroft, C. D. African easterly jet: barotropic instability, waves, and cyclogenesis. J. Clim. 25, 1489–1510 (2012).

    ADS  Google Scholar 

  • 62.

    Wu, M.-L. C., Reale, O. & Schubert, S. D. A characterization of African easterly waves on 2.5–6-day and 6–9-day time scales. J. Clim. 26, 6750–6774 (2013).

    ADS  Google Scholar 

  • 63.

    Large, W. G., McWilliams, J. C. & Doney, S. C. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363–403 (1994).

    ADS  Google Scholar 

  • 64.

    Foltz, G. R., Evan, A. T., Freitag, H. P., Brown, S. & McPhaden, M. J. Dust accumulation biases in PIRATA shortwave radiation records. J. Atmos. Ocean. Technol. 30, 1414–1432 (2013).

    ADS  Google Scholar 

  • 65.

    Balmaseda, M. A., Mogensen, K. & Weaver, A. T. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 139, 1132–1161 (2013).

    ADS  Google Scholar 

  • 66.

    Morel, A. & Antoine, D. Heating rate within the upper ocean in relation to its bio-optical state. J. Phys. Oceanogr. 24, 1652–1665 (1994).

    ADS  Google Scholar 

  • 67.

    Sweeney, C. et al. Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr. 35, 1103–1119 (2005).

    ADS  Google Scholar 

  • 68.

    Foltz, G. R. & McPhaden, M. J. Impact of barrier layer thickness on SST in the central tropical North Atlantic. J. Clim. 22, 285–299 (2009).

    ADS  Google Scholar 

  • 69.

    Fischer, J., Brandt, P., Dengler, M., Müller, M. & Symonds, D. Surveying the upper ocean with the ocean surveyor: a new phased array Doppler current profiler. J. Atmos. Ocean. Technol. 20, 742–751 (2003).

    ADS  Google Scholar 

  • 70.

    Wolk, F., Yamazaki, H., Seuront, L. & Lueck, R. G. A new free-fall profiler for measuring biophysical microstructure. J. Atmos. Ocean. Technol. 19, 780–793 (2002).

    ADS  Google Scholar 

  • 71.

    Merckelbach, L., Berger, A., Krahmann, G., Dengler, M. & Carpenter, J. R. A dynamic flight model for slocum gliders and implications for turbulence microstructure measurements. J. Atmos. Ocean. Technol. 36, 281–296 (2019).

    ADS  Google Scholar 

  • 72.

    Osborn, T. R. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10, 83–89 (1980).

    ADS  Google Scholar 

  • 73.

    Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 2007).

  • 74.

    Hoyer, S. et al. pydata/xarray v0.10.8. Version v0.10.8 (Zenodo, 2018).

  • 75.

    Hoyer, S. & Hammam, J. xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw. 5, 10 (2017).

    Google Scholar 

  • 76.

    Rocklin, M. Dask: Parallel Computation with Blocked algorithms and Task Scheduling, in Proceedings of the 14th Python in Science Conference. (eds  Huff, K. & Bergstra, J.) (2015).

  • 77.

    Oliphant T. E. A Guide to NumPy (Trelgol Publishing, 2006).

  • 78.

    Lam, S. K., Pitrou, A. & Seibert, S. Numba: a LLVM-based Python JIT compiler. In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC (Association for Computing Machinery, 2015).

  • 79.

    Mertens, C. & Schott, F. Interannual variability of deep-water formation in the Northwestern Mediterranean. J. Phys. Oceanogr. 28, 1410–1424 (1998).

    ADS  Google Scholar 

  • 80.

    Lascaratos, A., Williams, R. G. & Tragou, E. A mixed-layer study of the formation of Levantine intermediate water. J. Geophys. Res. 98, 14739–14749 (1993).

    ADS  Google Scholar 

  • 81.

    Schmidtko, S., Johnson, G. C. & Lyman, J. M. MIMOC: a global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res. 118, 1658–1672 (2013).

    ADS  Google Scholar 

  • Source: Ecology -

    Peering into peer review

    Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia