in

Synchronized moulting behaviour in trilobites from the Cambrian Series 2 of South China

  • 1.

    Owen, A. W. Trilobite abnormalities. Earth Environ. Sci. Trans. R. Soc. Edinb. 76(2–3), 255–272 (1985).

    Google Scholar 

  • 2.

    Daley, A. C. & Drage, H. B. The fossil record of ecdysis, and trends in the moulting behaviour of trilobites. Arthropod Struct. Dev. 45(2), 71–96 (2016).

    ADS  PubMed  Google Scholar 

  • 3.

    Clarkson, E. N. On the schizochroal eyes of three species of Reedops (Trilobita: Phacopidae) from the Lower Devonian of Bohemia. Earth Environ. Sci. Trans. R. Soc. Edinb. 68(8), 183–205 (1969).

    Google Scholar 

  • 4.

    Henningsmoen, G. Moulting in trilobites. Fossils Strata. 4(1), 79–200 (1975).

    Google Scholar 

  • 5.

    Howe, N. R. Partial molting synchrony in the giant Malaysian prawn, Macrobrachium rosenbergii: A chemical communication hypothesis. J. Chem. Ecol. 7(3), 487–500 (1981).

    PubMed  CAS  Google Scholar 

  • 6.

    Drage, H. B. Quantifying intra-and interspecific variability in trilobite moulting behaviour across the Palaeozoic. Paleontol. Electron. 22(2) (2019).

  • 7.

    Pates, S. & Bicknell, R. D. Elongated thoracic spines as potential predatory deterrents in olenelline trilobites from the lower Cambrian of Nevada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 516, 295–306 (2019).

    Google Scholar 

  • 8.

    Webster, S. G. Seasonal anecdysis and moulting synchrony in field populations of Palaemon elegans (Rathke). Estuar. Coast. Shelf Sci. 15(1), 85–94 (1982).

    ADS  Google Scholar 

  • 9.

    Leinaas, H. P. Synchronized moulting controlled by communication in group-living Collembola. Science 219(4581), 193–195 (1983).

    ADS  PubMed  CAS  Google Scholar 

  • 10.

    Stone, R. P. Mass molting of tanner crabs Chionoecetes bairdi in a Southeast Alaska-Estuary. Alaska Fish. Res. Bull. 6(1), 19–28 (1999).

    Google Scholar 

  • 11.

    Kim, K. W. Social facilitation of synchronized molting behavior in the spider Amaurobius ferox (Araneae, Amaurobiidae). J. Insect Behav. 14(3), 401–409 (2001).

    CAS  Google Scholar 

  • 12.

    Haug, J. T., Caron, J. B. & Haug, C. Demecology in the Cambrian: Synchronized molting in arthropods from the Burgess Shale. BMC Biol. 11(1), 64 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 13.

    Braddy, S. J. Eurypterid palaeoecology: Palaeobiological, ichnological and comparative evidence for a ‘mass–moult–mate’ hypothesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 172(1–2), 115–132 (2001).

    Google Scholar 

  • 14.

    Karim, T. & Westrop, S. R. Taphonomy and paleoecology of Ordovician trilobite clusters, Bromide Formation, south-central Oklahoma. Palaios 17, 394–402 (2002).

    ADS  Google Scholar 

  • 15.

    Vrazo, M. B. & Braddy, S. J. Testing the ‘mass-moult-mate’hypothesis of eurypterid palaeoecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 311(1–2), 63–73 (2011).

    Google Scholar 

  • 16.

    Paterson, J. R., Jago, J. B., Brock, G. A. & Gehling, J. G. Taphonomy and palaeoecology of the emuellid trilobite Balcoracania dailyi (early Cambrian, South Australia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 249(3–4), 302–321 (2007).

    Google Scholar 

  • 17.

    Błażejowski, B., Brett, C. E., Kin, A., Radwański, A. & Gruszczyński, M. Ancient animal migration: A case study of eyeless, dimorphic Devonian trilobites from Poland. Palaeontology 59(5), 743–751 (2016).

    Google Scholar 

  • 18.

    Vannier, J. et al. Collective behaviour in 480-million-year-old trilobite arthropods from Morocco. Sci. Rep. 9(1), 1–10 (2019).

    CAS  Google Scholar 

  • 19.

    Pocock, K. J. The Emuellidae, a new family of trilobites from the Lower Cambrian of South Australia. Palaeontology 13(4), 522–562 (1970).

    Google Scholar 

  • 20.

    Esker, G. C. New species of trilobites from the Bromide Formation (Pooleville Member) of Oklahoma. Oklahoma Geology Notes. 24(9), 195–209 (1964).

    Google Scholar 

  • 21.

    Thoral, M. Contribution à l’étude paléontologique de l’Ordovicien inférieur de la Montagne Noire et révision sommaire de la faune cambrienne de la Montagne Noire. (Imprimerie de la Charité, Montpellier, 1935).

  • 22.

    Passano, L. M. Molting and its control. In Metabolism and Growth (1960).

  • 23.

    Webster, M., Gaines, R. R. & Hughes, N. C. Microstratigraphy, trilobite biostratinomy, and depositional environment of the “lower Cambrian” Ruin Wash Lagerstätte, Pioche Formation, Nevada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 264(1–2), 100–122 (2008).

    Google Scholar 

  • 24.

    Esteve, J. & Zamora, S. Enrolled agnostids from Cambrian of Spain provide new insights about the mode of life in these forms. Bull. Geosci. 89(2), 283–291 (2014).

    Google Scholar 

  • 25.

    Speyer, S. E. Comparative taphonomy and palaeoecology of trilobite lagerstätten. Alcheringa 11(3), 205–232 (1987).

    Google Scholar 

  • 26.

    Geyer, G. & Peel, J. S. The Henson Gletscher Formation, North Greenland, and its bearing on the global Cambrian Series 2–Series 3 boundary. Bull. Geosci. 86(3), 465–534 (2011).

    Google Scholar 

  • 27.

    Zhou, T. M., Liu, Y. R., Meng, X. S & Sun, Z. H. Palaeontological atlas of central and southern China. In Early Palaeonzoic, vol. 1 (eds. Hubei Institute of Geological Sciences, Geological Bureau of Henan Province, Geological Bureau of Hubei Province, Geological Bureau of Hunan Province, Geological Bureau of Guangdong Province & Geological Bureau of Guangxi Province) 104–266 (Geological Publishing House, Beijing, 1977).

  • 28.

    Yuan, J. L. & Esteve, J. The earliest species of Burlingia Walcott, 1908 (Trilobita) from South China: Biostratigraphical and palaeogeographical significance. Geol. Mag. 152(2), 358–366 (2015).

    ADS  Google Scholar 

  • 29.

    Hughes, N. C., Minelli, A. & Fusco, G. The ontogeny of trilobite segmentation: A comparative approach. Paleobiology. 32(4), 602–627 (2006).

    Google Scholar 

  • 30.

    Brett, C. E. & Baird, G. C. Taphonomic approaches to temporal resolution in stratigraphy: Examples from Paleozoic marine mudrocks. Short Courses Paleontol. 6, 251–274 (1993).

    Google Scholar 

  • 31.

    Brandt, D. S. Taphonomic grades as a classification for fossiliferous assemblages and implications for paleoecology. Palaios 4(4), 303–309 (1989).

    ADS  Google Scholar 

  • 32.

    Schäfer, W. & Oertel, I. Ecology and Palaeoecology of Marine Environments (University of Chicago Press, Illinois, 1972).

    Google Scholar 

  • 33.

    Brett, C. E. & Baird, G. C. Comparative taphonomy: A key to paleoenvironmental interpretation based on fossil preservation. Palaios 1(3), 207–227 (1986).

    ADS  Google Scholar 

  • 34.

    Plotnick, R. E. Taphonomy of a modern shrimp: Implications for the arthropod fossil record. Palaios. 286–293 (1986).

  • 35.

    Plotnick, R. E., Baumiller, T. & Wetmore, K. L. Fossilization potential of the mud crab, Panopeus (Brachyura: Xanthidae) and temporal variability in crustacean taphonomy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 63(1–3), 27–43 (1988).

    Google Scholar 

  • 36.

    Babcock, L. E. & Chang, W. Comparative taphonomy of two nonmineralized arthropods: Naraoia (Nektaspida; Early Cambrian, Chengjiang Biota, China) and Limulus (Xiphosurida; Holocene, Atlantic Ocean). Collect. Res. 10, 233–250 (1997).

    Google Scholar 

  • 37.

    Speyer, S. E. & Brett, C. E. Clustered trilobite assemblages in the Middle Devonian Hamilton group. Lethaia. 18(2), 85–103 (1985).

    Google Scholar 

  • 38.

    Paterson, J. R. et al. Trilobite clusters: What do they tell us? A preliminary investigation. Adv. Trilobite Res. 9, 313–318 (2008).

    Google Scholar 

  • 39.

    Gaines, R. R. & Droser, M. L. Paleoecology of the familiar trilobite Elrathia kingii: An early exaerobic zone inhabitant. Geology 31(11), 941–944 (2003).

    ADS  Google Scholar 

  • 40.

    Gutiérrez-Marco, J. C., Sá, A. A., García-Bellido, D. C., Rábano, I. & Valério, M. Giant trilobites and trilobite clusters from the Ordovician of Portugal. Geology 37(5), 443–446 (2009).

    ADS  Google Scholar 

  • 41.

    Esteve, J., Hughes, N. C. & Zamora, S. Purujosa trilobite assemblage and the evolution of trilobite enrollment. Geology 39(6), 575–578 (2011).

    ADS  Google Scholar 

  • 42.

    Brett, C. E., Zambito, J. J. IV., Schindler, E. & Becker, R. T. Diagenetically-enhanced trilobite obrution deposits in concretionary limestones: The paradox of “rhythmic events beds”. Palaeogeogr. Palaeoclimatol. Palaeoecol. 367, 30–43 (2012).

    Google Scholar 

  • 43.

    Hoare, B. Animal Migration: Remarkable Journeys in the Wild. (University of California Press, 2009).

  • 44.

    Chatterton, B. D. E. & Fortey, R. A. Linear clusters of articulated trilobites from Lower Ordovician (Arenig) strata at Bini Tinzoulin, North Zagora, Southern Morocco. Adv. Trilobite Res. (Cuadernos del Museo Geominero) 9, 73–77 (2008).

  • 45.

    Trenchard, H., Brett, C. E. & Perc, M. Trilobite ‘pelotons’: Possible hydrodynamic drag effects between leading and following trilobites in trilobite queues. Palaeontology 60(4), 557–569 (2017).

    Google Scholar 

  • 46.

    Kim, K. W. & Horel, A. Matriphagy in the spider Amaurobius ferox (Araneidae, Amaurobiidae): an example of mother-offspring interactions. Ethology 104(12), 1021–1037 (1998).

    Google Scholar 

  • 47.

    Kim, K. W. & Roland, C. Trophic egg laying in the spider, Amaurobius ferox: mother–offspring interactions and functional value. Behav. Proc. 50(1), 31–42 (2000).

    CAS  Google Scholar 

  • 48.

    Drage, H. B., Holmes, J. D., García-Bellido, D. C. & Daley, A. C. An exceptional record of Cambrian trilobite moulting behaviour preserved in the Emu Bay Shale, South Australia. Lethaia 51(4), 473–492 (2018).

    Google Scholar 

  • 49.

    Zhao, Y. L. et al. Balang section, Guizhou, China: Stratotype section for the Taijiangian Stage and candidate for GSSP of an unnamed Cambrian Series. Camb. Syst. China Korea Guide Field Excursions 62–83 (2005).

  • 50.

    Zhao, Y. L. et al. Kaili Biota: A taphonomic window on diversification of metazoans from the basal Middle Cambrian: Guizhou, China. Acta Geol. Sin.-English Ed. 79(6), 751–765 (2005).

    Google Scholar 

  • 51.

    Yang, X. L., Zhao, Y. L., Peng, J., Yang, Y. N. & Yang, K. D. Discovery of Oryctocephalid trilobites from the Tsinghsutung Formation (Duyunian Stage, Qiandongian Series, Cambrian), Jianhe County, Guizhou Province. Geol. J. China Univ. 16(3), 309–316 (2010).

    Google Scholar 

  • 52.

    Yuan, J. L., Esteve, J. & Ng, T. W. Articulation, interlocking devices and enrolment in Monkaspis daulis (W alcott, 1905) from the Guzhangian, middle Cambrian of North China. Lethaia. 47(3), 405–417 (2014).

    Google Scholar 

  • 53.

    Zhao, Y. L., Yuan, J. L., Esteve, J. & Peng, J. The oryctocephalid trilobite zonation across the Cambrian Series 2-Series 3 boundary at Balang, South China: A reappraisal. Lethaia. 50(3), 400–406 (2017).

    Google Scholar 

  • 54.

    Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophoton. Int. 11(7), 36–42 (2004).

    Google Scholar 

  • 55.

    Esteve, J., Zhao, Y. L., Maté-González, M. A., Gómez-Heras, M. & Peng, J. A new high-resolution 3-D quantitative method for analysing small morphological features: An example using a Cambrian trilobite. Sci. Rep. 8(1), 1–10 (2018).

    CAS  Google Scholar 

  • 56.

    Lask, P. B. The hydrodynamic behavior of sclerites from the trilobite Flexicalymene meeki. Palaios, 219–225 (1993).

  • 57.

    Hesselbo, S. P. The biostratinomy of Dikelocephalus sclerites: implications for the use of trilobite attitude data. Palaios. 605–608 (1987).

  • 58.

    Mikulic, D. G. The arthropod fossil record: biologic and taphonomic controls on its composition. Short Courses Paleontol. 3, 1–23 (1990).

    Google Scholar 

  • 59.

    Speyer, S. E. & Donovan, S. K. Trilobite taphonomy: A basis for comparative studies of arthropod preservation, functional anatomy and behaviour. Processes Fossil., 194–219 (1991).

  • 60.

    Speyer, S. E. & Brett, C. E. Trilobite taphonomy and Middle Devonian taphofacies. Palaios., 312–327 (1986).

  • 61.

    Schumacher, G. A. & Shrake, D. L. Paleoecology and comparative taphonomy of an Isotelus (Trilobita) fossil lagerstätten from the Waynesville Formation (Upper Ordovician, Cincinnatian Series) of southwestern Ohio. In Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications. 131–161 (Columbia University Press, New York, 1997).

  • 62.

    Hickerson, W. J. Middle Devonian (Givetian) trilobite clusters from eastern Iowa and northwestern Illinois. In Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications. 224–246 (Columbia University Press, New York, 1997).

  • 63.

    Hughes, N. C. & Cooper, D. L. Paleobiologic and taphonomic aspects of the “granulosa” trilobite cluster, Kope Formation (Upper Ordovician, Cincinnati region). J. Paleontol. 73(2), 306–319 (1999).

    Google Scholar 

  • 64.

    Hunda, B. R., Hughes, N. C. & Flessa, K. W. Trilobite taphonomy and temporal resolution in the Mt. Orab shale bed (Upper Ordovician, Ohio, USA). Palaios. 21(1), 26–45 (2006).

  • 65.

    Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007).

    Google Scholar 

  • 66.

    Davis, J. C. Statistics and data analysis In Geology 289–291 (Wiley, New York, 1986).

  • 67.

    Roubeyrie, L. & Celles, S. Windrose: A Python Matplotlib, Numpy library to manage wind and pollution data, draw windrose. J Open Source Softw. 3(29), 268 (2018).

    ADS  Google Scholar 

  • 68.

    Sun, H.-J., Zhao, Y.-L., Peng, J. & Yang, Y.-N. New Wiwaxia material from the Tsinghsutung Formation (Cambrian Series 2) of Eastern Guizhou, China. Geol. Mag. 151(2), 339–348 (2014).

    ADS  CAS  Google Scholar 


  • Source: Ecology - nature.com

    MIT News – Food | Water

    Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes