in

Temperature and salinity, not acidification, predict near-future larval growth and larval habitat suitability of Olympia oysters in the Salish Sea

  • 1.

    Byrne, M. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr. Mar. Biol. An Annu. Rev. 49, 1–42 (2011).

    Google Scholar 

  • 2.

    Pineda, M. C. et al. Tough adults, frail babies: an analysis of stress sensitivity across early life-history stages of widely introduced marine invertebrates. PLoS ONE 7, e46672 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Gaines, S. & Roughgarden, J. Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proc. Natl. Acad. Sci. 82, 3707–3711 (1985).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    Pecorino, D., Lamare, M. D., Barker, M. F. & Byrne, M. How does embryonic and larval thermal tolerance contribute to the distribution of the sea urchin Centrostephanus rodgersii (Diadematidae) in New Zealand?. J. Exp. Mar. Bio. Ecol. 445, 120–128 (2013).

    Google Scholar 

  • 5.

    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).

    PubMed  Google Scholar 

  • 6.

    O’Connor, M. I. et al. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc. Natl. Acad. Sci. U.S.A. 104, 1266–1271 (2007).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Chang. 2, 686–690 (2012).

    ADS  Google Scholar 

  • 8.

    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).

    PubMed  Google Scholar 

  • 9.

    Fabry, V. J., Seibel, B. A., Feely, R. A., Fabry, J. C. O. & Fabry, V. J. Impacts of ocean acidification on marine fauna and ecosystem processes. ICE J. Mar. Sci. 65, 414–432 (2008).

    CAS  Google Scholar 

  • 10.

    Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).

    PubMed  Google Scholar 

  • 11.

    Beadle, B. Y. L. C. The effect of salinity changes on the water content and respiration of marine invertebrates. J. Exp. Biol. 8, 211–227 (1931).

    Google Scholar 

  • 12.

    Cheng, B. S., Chang, A. L., Deck, A. & Ferner, M. C. Atmospheric rivers and the mass mortality of wild oysters: Insight into an extreme future?. Proc. R. Soc. B Biol. Sci. 283, 20161462 (2016).

    Google Scholar 

  • 13.

    Przeslawski, R., Byrne, M. & Mellin, C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Global Change Biol. 21, 2122–2140 (2015).

    ADS  Google Scholar 

  • 14.

    Byrne, M. & Przeslawski, R. Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integ. Comp. Biol. 53, 582–596 (2013).

    CAS  Google Scholar 

  • 15.

    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Global Change Biol. 19, 1884–1896 (2013).

    ADS  Google Scholar 

  • 16.

    Bindoff, N. L., et al. Chapter 5: Changing ocean, marine ecosystems, and dependent communities. Intergovernmental panel of climate change. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate 447–587 (2019).

  • 17.

    Feely, R. A. et al. Present and future changes in seawater chemistry due to ocean acidification. Geophys. Monogr. Ser. 183, 175–188 (2009).

    CAS  Google Scholar 

  • 18.

    Rhein, M. et al. Observations: ocean. In Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge University Press, Cambridge, 2013). https://doi.org/10.1017/CBO9781107415324.010.

    Google Scholar 

  • 19.

    Narita, D., Rehdanz, K. & Tol, R. S. J. Economic costs of ocean acidification: a look into the impacts on global shellfish production. Clim. Change 113, 1049–1063 (2012).

    ADS  Google Scholar 

  • 20.

    Beck, M. W. et al. Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience 61, 107–116 (2011).

    Google Scholar 

  • 21.

    Blake, B. & Bradbury, A. Washington Department of Fish and Wildlife Plan for Rebuilding Olympia Oyster (Ostrea lurida ) Populations in Puget Sound with a Historical and Contemporary Overview. (2012).

  • 22.

    Hettinger, A. et al. The influence of food supply on the response of Olympia oyster larvae to ocean acidification. Biogeosciences 10, 6629–6638 (2013).

    ADS  Google Scholar 

  • 23.

    Hettinger, A. et al. Larval carry-over effects from ocean acidification persist in the natural environment. Global. Change Biol. 19, 3317–3326 (2013).

    Google Scholar 

  • 24.

    Li, J. et al. The potential of ocean acidification on suppressing larval development in the Pacific oyster Crassostrea gigas and blood cockle Arcain flata Reeve*. Chin. J. Oceanol. Limnol. 32, 1307–1313 (2014).

    ADS  CAS  Google Scholar 

  • 25.

    Talmage, S. C. & Gobler, C. J. Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of northwest Atlantic bivalves. PLoS ONE 6, e26941 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Waldbusser, G. G. et al. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2015).

    ADS  CAS  Google Scholar 

  • 27.

    Dekshenieks, M. M., Hofmann, E. E., Powell, E. N. & Powell, E. N. Environmental effects on the growth and development of eastern Oyster, Crassostrea virginica ( Gmelin, 1791), Larvae : a modeling study. J. Shellfish Res. 12, 241–254 (1993).

    Google Scholar 

  • 28.

    Ko, G. W. K. et al. Interactive effects of ocean acidification, elevated temperature, and reduced salinity on early-life stages of the pacific oyster. Environ. Sci. Technol. 48, 10079–10088 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 29.

    Shanks, A. L., Grantham, B. A. & Carr, M. H. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl. 13, 159–169 (2003).

    Google Scholar 

  • 30.

    Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).

    PubMed  Google Scholar 

  • 31.

    Pineda, J., Hare, J. A. & Sponaugle, S. Larval transport and dispersal in the coastal ocean and consequences for population connectivity. Oceanography 20, 22–39 (2007).

    Google Scholar 

  • 32.

    Barros, P., Sobral, P., Range, P., Chícharo, L. & Matias, D. Effects of sea-water acidification on fertilization and larval development of the oyster Crassostrea gigas. J. Exp. Mar. Biol. Ecol. 440, 200–206 (2013).

    Google Scholar 

  • 33.

    Hettinger, A. et al. Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. Ecology 93, 2758–2768 (2012).

    PubMed  Google Scholar 

  • 34.

    Barton, A. et al. Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography 28, 146–159 (2015).

    Google Scholar 

  • 35.

    Wasson, K. et al. Coast-wide recruitment dynamics of Olympia oysters reveal limited synchrony and multiple predictors of failure. Ecology https://doi.org/10.1002/ecy.1602 (2016).

    Article  PubMed  Google Scholar 

  • 36.

    Cole, V. J. et al. Effects of multiple climate change stressors: ocean acidification interacts with warming, hyposalinity, and low food supply on the larvae of the brooding flat oyster Ostrea angasi. Mar. Biol. 163, 1–17 (2016).

    CAS  Google Scholar 

  • 37.

    Havenhand, J., Dupont, S. & Quinn, G. P. Chapter 4: Designing ocean acidification experiments to maximise inference. in Guide to Best Practices for Ocean Acidification Research and Data Reporting 67–80 (2010).

  • 38.

    Mcintyre, B. A., McPhee-Shaw, E. E., Hatch, M. B. & Arellano, S. M. Location matters: passive and active factors affect the vertical distribution of Olympia oyster (Ostrea lurida) larvae. Estuaries Coasts https://doi.org/10.1007/s12237-020-00771-8 (2020).

    Article  Google Scholar 

  • 39.

    Davis, H. C. On cultivation of larvae of Ostrea lurida. Anat. Rec. 105, 111 (1949).

    Google Scholar 

  • 40.

    Loosanoff, V. L. & Davis, H. C. Rearing of bivalve mollusks. Adv. Mar. Biol. 1, 1–136 (1963).

    Google Scholar 

  • 41.

    Hofmann, E. E., Powell, E. N., Bochenek, E. A. & Klinck, J. M. A modelling study of the influence of environment and food supply on survival of Crassostrea gigas larvae. ICES J. Mar. Sci. 61, 596–616 (2004).

    Google Scholar 

  • 42.

    Barber, J. S., Dexter, J. E., Grossman, S. K., Greiner, C. M. & Mcardle, J. T. Low temperature brooding of Olympia Oysters (Ostrea lurida) in Northern Puget sound. J. Shellfish Res. 35, 351–357 (2016).

    Google Scholar 

  • 43.

    Hopkins, A. E. Experimental observations on spawining, larval development, and setting in the Olympia oyster Ostrea lurida. Bull U.S.A. Bur. Fish. 48, 439–503 (1937).

    Google Scholar 

  • 44.

    Pritchard, C., Shanks, A., Rimler, R., Oates, M. & Rumrill, S. The Olympia Oyster Ostrea lurida : recent advances in natural history, ecology, and restoration. J. Shellfish Res. 34, 259–271 (2015).

    Google Scholar 

  • 45.

    Bible, J. M. et al. Timing of stressors alters interactive effects on a coastal foundation species. Ecology 98, 2468–2478 (2017).

    PubMed  Google Scholar 

  • 46.

    Waldbusser, G. G. et al. Slow shell building, a possible trait for resistance to the effects of acute ocean acidification. Limnol. Oceanogr. 61, 1969–1983 (2016).

    ADS  CAS  Google Scholar 

  • 47.

    Lucey, N. M. et al. To brood or not to brood: are marine invertebrates that protect their offspring more resilient to ocean acidification?. Sci. Rep. 5, 1–7 (2015).

    Google Scholar 

  • 48.

    Barton, A., Hales, B., Waldbusser, G. G., Langdon, C. & Feelyd, R. A. The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnol. Oceanogr. 57, 698–710 (2012).

    ADS  CAS  Google Scholar 

  • 49.

    Miller, A. W., Reynolds, A. C., Sobrino, C. & Riedel, G. F. Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in estuaries. PLoS ONE 4, e5661 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Khangaonkar, T. et al. Analysis of hypoxia and sensitivity to nutrient pollution in Salish Sea. J. Geophys. Res. Ocean. 123, 4735–4761 (2018).

    ADS  CAS  Google Scholar 

  • 51.

    Spencer, L. H. et al. Carryover effects of temperature and pCO2 across multiple Olympia oyster populations. Ecol. Appl. 30, e02060 (2020).

    PubMed  Google Scholar 

  • 52.

    Scheltema, R. S. Larval dispersal as a means of genetic exchange between geographically separated populations of shallow-water benthic marine gastropods. Biol. Bull. 140, 284–322 (1971).

    Google Scholar 

  • 53.

    Pechenik, J. A. On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar. Ecol. Prog. Ser. 177, 269–297 (1999).

    ADS  Google Scholar 

  • 54.

    Stick, D. A. Identification of Optimal Broodstock for Pacific Northwest Oysters (Oregon State University, Oregon, 2011).

    Google Scholar 

  • 55.

    Silliman, K. Population structure, genetic connectivity, and adaptation in the Olympia oyster (Ostrea lurida) along the west coast of North America. Evol. Appl. 12, 923–939 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Hatch, M. B. A., College, N. I. & Wyllie-echeverria, S. Historic distribution of Ostrea lurida (Olympia oyster) in the San Juan Archipelago. Washington State. 1, 38–45 (2008).

    Google Scholar 

  • 57.

    Polson, M. P. & Zacherl, D. C. Geographic distribution and intertidal population status for the Olympia Oyster, Ostrea lurida Carpenter 1864, from Alaska to Baja. J. Shellfish Res. 28, 69–77 (2009).

    Google Scholar 

  • 58.

    Dekshenieks, M. M., Hofmann, E. E., Klinck, J. M. & Powell, E. N. Quantifying the effects of environmental change on an Oyster population: a modeling study. Estuaries 23, 593–610 (2000).

    Google Scholar 

  • 59.

    Powell, E. N., Klinck, J. M., Hofmann, E. E. & Ray, S. M. Modeling oyster populations. IV: Rates of mortality, population crashes, and management. Fish. Bull. 92, 347–373 (1994).

    Google Scholar 

  • 60.

    Chan, F. et al. Persistent spatial structuring of coastal ocean acidification in the California Current System. Sci. Rep. 7, 1–7 (2017).

    Google Scholar 

  • 61.

    Long, W. & Khangaonkar, T. Approach for Simulating Acidification and the Carbon Cycle in the Salish Sea to Distinguish Regional Source Impacts. Washington Department of Ecology (2014).

  • 62.

    Love, B. A., Olson, M. B. & Wuori, T. Technical note: a minimally invasive experimental system for pCO2 manipulation in plankton cultures using passive gas exchange (atmospheric carbon control simulator). Biogeosciences 14, 2675–2684 (2017).

    ADS  CAS  Google Scholar 

  • 63.

    Strathmann, M. F. Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast (University of Washington Press, Seattle, 1987).

    Google Scholar 

  • 64.

    Ko, G. W. K. et al. Larval and post-larval stages of pacific Oyster (Crassostrea gigas) are resistant to elevated CO2. PLoS ONE 8, 1–12 (2013).

    Google Scholar 

  • 65.

    Buckham, S. Ocean acidification affects larval swimming in Ostrea lurida but not Crassostrea gigas. WWU Graduate School Collection. https://cedar.wwu.edu/wwuet/451 (2015).

  • 66.

    Dickson, A., Sabine, C. & Christian, J. (eds). Guide to Best Practices for Ocean CO2 Measurements. In PICES Special Publication 3 191 (2007).

  • 67.

    Pelletier, G., Lewis, E. & Wallace, D. co2.sys2.1.xls, a Calculator for the CO2System in Seawater for Microsoft Excel/VBA, Washington State Department of Ecology, Olympia, WA, Brookhaven National Laboratory, Upton, NY. (2012).

  • 68.

    Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H. & Pierrot, D. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar. Chem. 100, 80–94 (2006).

    CAS  Google Scholar 

  • 69.

    Waldbusser, G. G. et al. Ocean acidification has multiple modes of action on bivalve larvae. PLoS ONE 10, e0128376 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 70.

    Gazeau, F. et al. Impacts of ocean acidification on marine shelled molluscs. Mar. Biol. 160, 2207–2245 (2013).

    CAS  Google Scholar 

  • 71.

    Khangaonkar, T., Nugraha, A., Xu, W. & Balaguru, K. Salish Sea response to global climate change, sea level rise, and future nutrient loads. J. Geophys. Res. Ocean. https://doi.org/10.1029/2018JC014670 (2019).

    Article  Google Scholar 

  • 72.

    Loosanoff, V. L., Davis, H. C. & Chalney, P. E. Dimensions and shapes of larvae of some marine bivalve mollusks. Malacologia 4, 351–435 (1966).

    Google Scholar 

  • 73.

    Brink, L. A. Molluscs: Bivalvia. Identification Guide to Larval Marine Invertebrates ofthe Pacific Northwest 129–149 (2001).

  • 74.

    Hori, J. On the development of the Olympia oyster, Ostrea lurida carpenter, transplanted from United States to Japan. Bull. Jpn. Soc. Sci. Fish 1, 269–276 (1933).

    Google Scholar 


  • Source: Ecology - nature.com

    Pit lakes from Southern Sweden: natural radioactivity and elementary characterization

    Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens