in

Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies

  • 1.

    Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty P. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. N Phytol. 2019;223:1–11.

    Article  CAS  Google Scholar 

  • 2.

    Miller RM, Jastrow JD, Reinhardt DR. External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia. 1995;103:17–23.

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read DJ. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot. 2004;82:1016–45.

    Article  Google Scholar 

  • 4.

    Bago B, Pfeffer PE, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 2000;124:949–58.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci. 2010;107:10938–42.

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Giri B, Saxena B. Response of arbuscular mycorrhizal fungi to global climate change and their role in terrestrial ecosystem C and N cycling. In: Varma A, Prasad R, Tuteja N editors. Mycorrhiza—function, diversity, state of the art. Cham: Springer International Publishing; 2017. p. 305–27.

  • 7.

    Field KJ, Pressel S, Duckett JG, Rimington WR, Bidartondo MI. Symbiotic options for the conquest of land. Trends Ecol Evol. 2015;30:477–86.

    PubMed  Article  Google Scholar 

  • 8.

    Martin FM, Uroz S, Barker DG. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science. 2017;356:eaad4501.

    PubMed  Article  CAS  Google Scholar 

  • 9.

    Brundrett MC. Coevolution of roots and mycorrhizas of land plants. N Phytol. 2002;154:275–304.

    Article  Google Scholar 

  • 10.

    Werner GDA, Cornelissen JHC, Cornwell WK, Soudzilovskaia NA, Kattge J, West SA, et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc Natl Acad Sci. 2018;115:5229–34.

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Gange AC, Stagg PG, Ward LK. Arbuscular mycorrhizal fungi affect phytophagous insect specialism. Ecol Lett. 2002;5:11–5.

    Article  Google Scholar 

  • 12.

    Koricheva J, Gange AC, Jones T. Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology. 2009;90:2088–97.

    PubMed  Article  Google Scholar 

  • 13.

    Hart MM, Reader RJ, Klironomos JN. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol. 2003;18:418–23.

    Article  Google Scholar 

  • 14.

    Hiiesalu I, Pärtel M, Davison J, Gerhold P, Metsis M, Moora M, et al. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. N Phytol. 2014;203:233–44.

    CAS  Article  Google Scholar 

  • 15.

    Gerz M, Bueno CG, Zobel M, Moora M. Plant community mycorrhization in temperate forests and grasslands: relations with edaphic properties and plant diversity. J Veg Sci. 2016;27:89–99.

    Article  Google Scholar 

  • 16.

    He X, Critchley C, Bledsoe C. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). CRC Crit Rev Plant Sci. 2003;22:531–67.

    Article  Google Scholar 

  • 17.

    Smith, Sally E., and David J. Read. Mycorrhizal symbiosis. 3rd edn. (Academic press, London, 2008).

  • 18.

    Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, et al. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science. 2017;356:1175–8.

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza. 2000;9:331–6.

    CAS  Article  Google Scholar 

  • 20.

    Azcón R, Ambrosano E, Charest C. Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Sci. 2003;165:1137–45.

    Article  CAS  Google Scholar 

  • 21.

    Ramírez-Viga TK, Aguilar R, Castillo-Argüero S, Chiappa-Carrara X, Guadarrama P, Ramos-Zapata J. Wetland plant species improve performance when inoculated with arbuscular mycorrhizal fungi: a meta-analysis of experimental pot studies. Mycorrhiza. 2018;28:477–93.

    PubMed  Article  Google Scholar 

  • 22.

    Weremijewicz J, Janos DP. Common mycorrhizal networks amplify size inequality in Andropogon gerardii monocultures. N Phytol. 2013;198:203–13.

    CAS  Article  Google Scholar 

  • 23.

    Bücking H, Shachar-Hill Y. Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. N Phytol. 2005;165:899–912.

    Article  CAS  Google Scholar 

  • 24.

    Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, et al. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci. 2012;109:2666–71.

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Fellbaum CR, Mensah JA, Cloos AJ, Strahan GE, Pfeffer PE, Kiers ET, et al. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. N Phytol. 2014;203:646–56.

    CAS  Article  Google Scholar 

  • 26.

    Konvalinková T, Püschel D, Janoušková M, Gryndler M, Jansa J. Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula. Front Plant Sci. 2015;6:1–11.

    Article  Google Scholar 

  • 27.

    Zheng C, Ji B, Zhang J, Zhang F, Bever JD. Shading decreases plant carbon preferential allocation towards the most beneficial mycorrhizal mutualist. N Phytol. 2015;205:361–8.

    CAS  Article  Google Scholar 

  • 28.

    Varga S, Kytöviita M. Mycorrhizal benefit differs among the sexes in a gynodioecious species. Ecology. 2010;91:2583–93.

    PubMed  Article  Google Scholar 

  • 29.

    Merrild MP, Ambus P, Rosendahl S, Jakobsen I. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants. N Phytol. 2013;200:229–40.

    CAS  Article  Google Scholar 

  • 30.

    Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty PE. Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. N Phytol. 2015;205:1632–45.

    CAS  Article  Google Scholar 

  • 31.

    Weremijewicz J, Sternberg L, da SLO, Janos DP. Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. N Phytol. 2016;212:461–71.

    CAS  Article  Google Scholar 

  • 32.

    Werner GDA, Kiers ET. Partner selection in the mycorrhizal mutualism. N Phytol. 2015;205:1437–42.

    Article  Google Scholar 

  • 33.

    Bachelot B, Lee CT. Dynamic preferential allocation to arbuscular mycorrhizal fungi explains fungal succession and coexistence. Ecology. 2018;99:372–84.

    PubMed  Article  Google Scholar 

  • 34.

    Wyatt GAK, Kiers ET, Gardner A, West SA. A biological market analysis of the plant-mycorrhizal symbiosis. Evolution. 2014;68:2603–18.

    PubMed  Article  Google Scholar 

  • 35.

    Noë R, Kiers ET. Mycorrhizal markets, firms, and co-ops. Trends Ecol Evol. 2018;33:777–89.

    PubMed  Article  Google Scholar 

  • 36.

    Bender SF, Wagg C, van der Heijden MGA. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol. 2016;31:440–52.

    PubMed  Article  Google Scholar 

  • 37.

    Konvalinková T, Jansa J. Lights off for arbuscular mycorrhiza: on its symbiotic functioning under light deprivation. Front Plant Sci. 2016;7:1–11.

    Article  Google Scholar 

  • 38.

    Whiteside MD, Werner GDAA, Caldas VEA, van’t Padje A, Dupin SE, Elbers B, et al. Mycorrhizal fungi respond to resource inequality by moving phosphorus from rich to poor patches across networks. Curr Biol. 2019;29:2043–50.e8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Bailey RE, Nie S. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc. 2003;125:7100–6.

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Jang E, Jun S, Pu L. High quality CdSeS nanocrystals synthesized by facile single injection process and their electroluminescence. Chem Commun. 2003;24:2964–5.

  • 41.

    Declerck S, Fortin JA, Strullu DG (eds). In vitro culture of mycorrhizas. Berlin, Heidelberg: Springer; 2005.

  • 42.

    Engelmoer DJP, Behm JE, Kiers ET. Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Mol Ecol. 2014;23:1584–93.

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Ness RLL, Vlek PLG. Mechanism of calcium and phosphate release from hydroxy-apatite by mycorrhizal hyphae. Soil Sci Soc Am J. 2000;64:949–55.

    CAS  Article  Google Scholar 

  • 44.

    Tang I-M, Krishnamra N, Charoenphandhu N, Hoonsawat R, Pon-On W. Biomagnetic of apatite-coated cobalt ferrite: a core–shell particle for protein adsorption and pH-controlled release. Nanoscale Res Lett. 2010;6:19.

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Kawashita M, Taninai K, Li Z, Ishikawa K, Yoshida Y. Preparation of low-crystalline apatite nanoparticles and their coating onto quartz substrates. J Mater Sci Mater Med. 2012;23:1355–62.

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Sun S, Chan LS, Li Y-L. Flower-like apatite recording microbial processes through deep geological time and its implication to the search for mineral records of life on Mars. Am Miner. 2014;99:2116–25.

    Article  Google Scholar 

  • 47.

    Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–2.

    CAS  PubMed  Article  Google Scholar 

  • 48.

    R core team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018. https://www.r-project.org/.

  • 49.

    Walker C. A simple blue staining technique for arbuscular mycorrhizal and other root-inhabiting fung. Inoculum. 2005;56:68–9.

    Google Scholar 

  • 50.

    Rossow MJ, Sasaki JM, Digman MA, Gratton E. Raster image correlation spectroscopy in live cells. Nat Protoc. 2010;5:1761–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Whiteside MD, Digman MA, Gratton E, Treseder KK. Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol Biochem. 2012;55:7–13.

    CAS  Article  Google Scholar 

  • 52.

    Bates D, Mächler M, Bolker B, Walker S. “Fitting Linear Mixed-Effects Models Using lme4.” Journal of Statistical Software. 2015. 67;1:1–48.

  • 53.

    Kuznetsova A, Brockhoff PB, Christensen RHB (2017). “lmerTest Package: Tests in Linear Mixed Effects Models.” Journal of Statistical Software. 2017. 82;13:1–26.

  • 54.

    Fox J, Weisberg S. An R companion to applied regression. 2nd edn (Sage Publications, Inc, Thousand Oaks CA, 2016).

  • 55.

    Javot H, Pumplin N, Harrison MJ. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ. 2007;30:310–22.

    CAS  PubMed  Article  Google Scholar 

  • 56.

    Konečný J, Hršelová H, Bukovská P, Hujslová M, Jansa J. Correlative evidence for co-regulation of phosphorus and carbon exchanges with symbiotic fungus in the arbuscular mycorrhizal Medicago truncatula. PLoS ONE. 2019;14:1–24.

    Article  CAS  Google Scholar 

  • 57.

    Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, et al. Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife. 2017;6:1–33.

    Article  Google Scholar 

  • 58.

    Burleigh SH, Cavagnaro T, Jakobsen I. Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot. 2002;53:1593–601.

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Smith SE. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol. 2003;133:16–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Grønlund M, Albrechtsen M, Johansen IE, Hammer EC, Nielsen TH, Jakobsen I. The interplay between P uptake pathways in mycorrhizal peas: a combined physiological and gene-silencing approach. Physiol Plant. 2013;149:234–48.

    PubMed  Article  CAS  Google Scholar 

  • 61.

    Smith SE, Smith FA, Jakobsen I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. N Phytol. 2004;162:511–24.

    Article  Google Scholar 

  • 62.

    Watts-Williams SJ, Jakobsen I, Cavagnaro TR, Grønlund M. Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula. J Exp Bot. 2015;66:4061–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Pel R, Dupin S, Schat H, Ellers J, Kiers ET, van Straalen NM. Growth benefits provided by different arbuscular mycorrhizal fungi to Plantago lanceolata depend on the form of available phosphorus. Eur J Soil Biol. 2018;88:89–96.

    CAS  Article  Google Scholar 

  • 64.

    Reynolds HL, Vogelsang KM, Hartley AE, Bever JD, Schultz PA. Variable responses of old-field perennials to arbuscular mycorrhizal fungi and phosphorus source. Oecologia. 2006;147:348–58.

    PubMed  Article  Google Scholar 

  • 65.

    Lu R, Drubin DG, Sun Y. Clathrin-mediated endocytosis in budding yeast at a glance. J Cell Sci. 2016;129:1531–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND. Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc. 2000;198:246–59.

    CAS  PubMed  Article  Google Scholar 

  • 67.

    Read ND, Kalkman ER. Does endocytosis occur in fungal hyphae? Fungal Genet Biol. 2003;39:199–203.

    CAS  PubMed  Article  Google Scholar 

  • 68.

    Epp E, Nazarova E, Regan H, Douglas LM, Konopka JB, Vogel J, et al. Clathrin- and arp2/3-independent endocytosis in the fungal pathogen Candida albicans. MBio. 2013;4:e00476–13.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 69.

    Colin Y, Nicolitch O, Turpault MP, Uroz S. Mineral types and tree species determine the functional and taxonomic structures of forest soil bacterial communities. Appl Environ Microbiol. 2017;83:1–23.

    Article  Google Scholar 

  • 70.

    Fontaine L, Thiffault N, Paré D, Fortin J-A, Piché Y. Phosphate-solubilizing bacteria isolated from ectomycorrhizal mycelium of Picea glauca are highly efficient at fluorapatite weathering. Botany. 2016;94:1183–93.

    CAS  Article  Google Scholar 

  • 71.

    Alloush GA, Clark RB. Maize response to phosphate rock and arbuscular mycorrhizal fungi in acidic soil. Commun Soil Sci Plant Anal. 2001;32:231–54.

    CAS  Article  Google Scholar 

  • 72.

    Powell CL, Daniel J. Mycorrhizal fungi stimulate uptake of soluble and insoluble phosphate fertilizer from a phosphate‐deficient soil. N Phytol. 1978;80:351–8.

    CAS  Article  Google Scholar 

  • 73.

    Jakobsen I, Hammer EC. Nutrient dynamics in arbuscular mycorrhizal networks. In: Horton TR, editor. Mycorrhizal networks. Dordrecht: Springer Netherlands; 2015. p. 91–131.

  • 74.

    Marler MJ, Zabinski CA, Callaway RM. Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology. 1999;80:1180–6.

    Article  Google Scholar 

  • 75.

    Carey EV, Marler MJ, Callaway RM. Mycorrhizae transfer carbon from a native grass to an invasive weed: evidence from stable isotopes and physiology. Plant Ecol. 2004;172:133–41.

    Article  Google Scholar 

  • 76.

    van der Heijden MGA. Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecol Lett. 2004;7:293–303.

    Article  Google Scholar 

  • 77.

    van der Heijden MGA, Horton TR. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol. 2009;97:1139–50.

    Article  Google Scholar 

  • 78.

    Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J. 2005;89:1317–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Nieves DJ, Li Y, Fernig DG, Levy R. Photothermal raster image correlation spectroscopy of gold nanoparticles in solution and on live cells. R Soc Open Sci. 2015;2:140454.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Johnson NC, Graham JH, Smith FA. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. N Phytol. 1997;135:575–85.

    Article  Google Scholar 

  • 81.

    Johnson NC, Wilson JA, Bowker MA, Wilson JA, Miller RM. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci. 2010;107:2093–8.

    CAS  PubMed  Article  Google Scholar 

  • 82.

    Argüello A, O’Brien MJ, van der Heijden MGA, Wiemken A, Schmid B, Niklaus PA. Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism. Ecol Lett. 2016;19:648–56.

    PubMed  Article  Google Scholar 

  • 83.

    Noë R, Hammerstein P. Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behav Ecol Sociobiol. 1994;35:1–11.

    Article  Google Scholar 

  • 84.

    Werner GDA, Strassmann JE, Ivens ABF, Engelmoer DJP, Verbruggen E, Queller DC, et al. Evolution of microbial markets. Proc Natl Acad Sci. 2014;111:1237–44.

    CAS  PubMed  Article  Google Scholar 

  • 85.

    Musat N, Musat F, Weber PK, Pett-Ridge J. Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol. 2016;41:114–21.

    CAS  PubMed  Article  Google Scholar 

  • 86.

    Bücking H, Mensah JA, Fellbaum CR. Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis. Commun Integr Biol. 2016;9:1–4.

    Article  CAS  Google Scholar 

  • 87.

    Roger A, Colard A, Angelard C, Sanders IR. Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence. ISME J. 2013;7:2137–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 88.

    Wagg C, Jansa J, Schmid B, van der Heijden MGA. Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett. 2011;14:1001–9.

    PubMed  Article  Google Scholar 

  • 89.

    Douglas AE. Conflict, cheats and the persistence of symbioses. N Phytol. 2008;177:849–58.

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Genetic structure in Orkney island mice: isolation promotes morphological diversification

    Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize in Zimbabwe