in

The antipredator benefits of postural camouflage in peppered moth caterpillars

  • 1.

    Ruxton, G. D., Allen, W. L., Sherratt, T. N. & Speed, M. P. Avoiding Attack. The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry (Oxford University Press, Oxford, 2018).

    Google Scholar 

  • 2.

    Skelhorn, J., Rowland, H. M. & Ruxton, G. D. The evolution and ecology of masquerade. Biol. J. Linn. Soc. 99, 1–8 (2010).

    Article  Google Scholar 

  • 3.

    Stevens, M. & Merilaita, S. Animal Camouflage: Mechanisms and Function (Cambridge University Press, Cambridge, 2011).

    Google Scholar 

  • 4.

    Stevens, M. & Ruxton, G. D. The key role of behaviour in animal camouflage. Biol. Rev. 94, 116–134. https://doi.org/10.1111/brv.12438 (2019).

    Article  Google Scholar 

  • 5.

    Stevens, M., Troscianko, J., Wilson-Aggarwal, J. K. & Spottiswoode, C. N. Improvement of individual camouflage through background choice in ground-nesting birds. Nat. Ecol. Evol. 1, 1325–1333. https://doi.org/10.1038/s41559-017-0256-x (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Lovell, P. G., Ruxton, G. D., Langridge, K. V. & Spencer, K. A. Egg-laying substrate selection for optimal camouflage by quail. Curr. Biol. 23, 260–264. https://doi.org/10.1016/j.cub.2012.12.031 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 7.

    Sargent, T. D. Background selections of geometrid and noctuid moths. Science 154, 1674. https://doi.org/10.1126/science.154.3757.1674 (1966).

    ADS  Article  Google Scholar 

  • 8.

    Kang, C. K., Moon, J. Y., Lee, S. I. & Jablonski, P. G. Camouflage through an active choice of a resting spot and body orientation in moths. J. Evol. Biol. 25, 1695–1702 (2012).

    Article  Google Scholar 

  • 9.

    Skelhorn, J., Rowland, H. M., Delf, J., Speed, M. P. & Ruxton, G. D. Density-dependent predation influences the evolution and behavior of masquerading prey. Proc. Natl. Acad. Sci. U.S.A. 108, 6532–6536. https://doi.org/10.1073/pnas.1014629108 (2011).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Eacock, A. et al. Adaptive colour change and background choice behaviour in peppered moth caterpillars is mediated by extraocular photoreception. Commun. Biol. 2, 286. https://doi.org/10.1038/s42003-019-0502-7 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Skelhorn, J. et al. Size-dependent misclassification of masquerading prey. Behav. Ecol. 21, 1344–1348. https://doi.org/10.1093/beheco/arq159 (2010).

    Article  Google Scholar 

  • 12.

    Eacock, A., Rowland, H. M., Edmonds, N. & Saccheri, I. J. Colour change of twig-mimicking peppered moth larvae is a continuous reaction norm that increases camouflage against avian predators. PeerJ 5, e3999. https://doi.org/10.7717/peerj.3999 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Ruxton, G. D. & Stevens, M. The evolutionary ecology of decorating behaviour. Biol. Lett. 11, 20150325. https://doi.org/10.1098/rsbl.2015.0325 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Liu, M., Blamires, S. J., Liao, C. & Min Tso, I. Evidence of bird dropping masquerading by a spider to avoid predators. Sci. Rep. 4, 5058. https://doi.org/10.1038/srep05058 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Konstantinov, A. S., Prathapan, K. D. & Vencl, F. V. Hiding in plain sight: leaf beetles (Chrysomelidae: Galerucinae) use feeding damage as a masquerade decoy. Biol. J. Linn. Soc. 123, 311–320. https://doi.org/10.1093/biolinnean/blx149 (2018).

    Article  Google Scholar 

  • 16.

    Poulton, E. B. The Colours of Animals: Their Meaning and Use. Especially Considered in the Case of Insects (Kegan Paul, Trench Trubner & Co, London, 1890).

    Google Scholar 

  • 17.

    Cott, H. B. Adaptive Coloration in Animals (Methuen, London, 1940).

    Google Scholar 

  • 18.

    Cooper, W. E. J. & Sherbrooke, W. C. Choosing between a rock and a hard place: camouflage in the round-tailed horned lizard Phrynosoma modestum. Curr. Zool. 58, 541–548 (2012).

    Article  Google Scholar 

  • 19.

    Pianka, E. R. Lizards: Windows to the Evolution of Diversity (University of California Press, Berkeley, 2006).

    Google Scholar 

  • 20.

    Zhang, S. et al. Crypsis via leg clustering: twig masquerading in a spider. R. Soc. Open Sci. 2, 150007. https://doi.org/10.1098/rsos.150007 (2015).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Skelhorn, J. Masquerade. Curr. Biol. 25, R643–R644. https://doi.org/10.1016/j.cub.2015.02.069 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Cestari, C., Gonçalves, C. S. & Sazima, I. Use flexibility of perch types by the branch-camouflaged Common Potoo (Nyctibius griseus): why this bird may occasionally dare to perch on artificial substrates. Wilson J. Ornithol. 130, 191–199 (2018).

    Article  Google Scholar 

  • 23.

    Hanlon, R. T., Forsythe, J. W. & Joneschild, D. E. Crypsis, conspicuousness, mimicry and polyphenism as antipredator defences of foraging octopuses on Indo-Pacific coral reefs, with a method of quantifying crypsis from video tapes. Biol. J. Linn. Soc. 66, 1–22 (1999).

    Article  Google Scholar 

  • 24.

    Barbosa, A., Allen, J. J., Mäthger, L. M. & Hanlon, R. T. Cuttlefish use visual cues to determine arm postures for camouflage. Proc. Biol. Sci. 279, 84–90. https://doi.org/10.1098/rspb.2011.0196 (2012).

    Article  PubMed  Google Scholar 

  • 25.

    Panetta, D., Buresch, K. & Hanlon, R. T. Dynamic masquerade with morphing three-dimensional skin in cuttlefish. Biol. Lett. https://doi.org/10.1098/rsbl.2017.0070 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Suzuki, T. N. & Sakurai, R. Bent posture improves the protective value of bird dropping masquerading by caterpillars. Anim. Behav. 105, 79–84. https://doi.org/10.1016/j.anbehav.2015.04.009 (2015).

    Article  Google Scholar 

  • 27.

    Dockery, M., Meneely, J. & Costen, P. Avoiding detection by predators: the tactics used by Biston betularia larvae. Br. J. Entomol. Nat. Hist. 22, 247–253 (2009).

    Google Scholar 

  • 28.

    Galler, S., Litzlbauer, J., Kröss, M. & Grassberger, H. The highly efficient holding function of the mollusc catch muscle is not based on decelerated myosin head cross-bridge cycles. Proc. R. Soc. B Biol. Sci. 277, 803–808. https://doi.org/10.1098/rspb.2009.1618 (2010).

    Article  Google Scholar 

  • 29.

    Gally, M., Silva, A. S. F. L. & Zina, J. Death feigning in Physalaemus kroyeri (Reinhardt and Lütken, 1862) (Anura, Leiuperidae). Herpetol. Notes 5, 133–135 (2012).

    Google Scholar 

  • 30.

    Levesque, K. R., Levesque, K. R., Fortin, M. & Mauffette, Y. Temperature and food quality effects on growth, consumption and post-ingestive utilization efficiencies of the forest tent caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae). Bull. Entomol. Res. 92, 127–136. https://doi.org/10.1079/ber2002153 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Skelhorn, J., Rowland, H. M., Speed, M. P. & Ruxton, G. D. Masquerade: camouflage without crypsis. Science 327, 51 (2010).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Skelhorn, J. & Ruxton, G. D. Mimicking multiple models: polyphenetic masqueraders gain additional benefits from crypsis. Behav. Ecol. 22, 60–65. https://doi.org/10.1093/beheco/arq166 (2011).

    Article  Google Scholar 

  • 33.

    Skelhorn, J. & Ruxton, G. D. Context-dependent misclassification of masquerading prey. Evol. Ecol. 25, 751–761. https://doi.org/10.1007/s10682-010-9435-9 (2011).

    Article  Google Scholar 

  • 34.

    Ewert, J. P. The neural basis of visually guided behavior. Sci. Am. 230, 34–42. https://doi.org/10.1038/scientificamerican0374-34 (1974).

    CAS  Article  PubMed  Google Scholar 

  • 35.

    Scholl, B. J. Objects and attention: the state of the art. Cognition 80, 1–46. https://doi.org/10.1016/S0010-0277(00)00152-9 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 36.

    Miller, C. T. & Bee, M. A. Receiver psychology turns 20: Is it time for a broader approach?. Anim. Behav. 83, 331–343. https://doi.org/10.1016/j.anbehav.2011.11.025 (2012).

    Article  PubMed  Google Scholar 

  • 37.

    Snowden, R., Thompson, P. & Troscianko, T. Basic Vision: An Introduction to Visual Perception (Oxford University Press, Oxford, 2012).

    Google Scholar 

  • 38.

    Opell, B. D. & Eberhard, W. G. Resting postures of orb-weaving uloborid spiders (Araneae, Uloboridae). J. Arachnol. 11, 369–376 (1983).

    Google Scholar 

  • 39.

    Skelhorn, J. & Ruxton, G. D. Size-dependent microhabitat selection by masquerading prey. Behav. Ecol. 24, 89–97 (2012).

    Article  Google Scholar 

  • 40.

    Hill, G. E. & McGraw, K. J. Bird Coloration, Volume 1: Mechanisms and Measurements (Harvard University Press, Cambridge, 2006).

    Google Scholar 

  • 41.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 42.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article  Google Scholar 

  • 43.

    Boggs, C. L. & Niitepõld, K. Effects of larval dietary restriction on adult morphology, with implications for flight and life history. Entomol. Exp. Appl. 159, 189–196. https://doi.org/10.1111/eea.12420 (2016).

    Article  Google Scholar 

  • 44.

    Johnson, H., Solensky, M. J., Satterfield, D. A. & Davis, A. K. Does skipping a meal matter to a butterfly’s appearance? Effects of larval food stress on wing morphology and color in monarch butterflies. PLoS ONE 9, e93492. https://doi.org/10.1371/journal.pone.0093492 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Kingsolver, J. G., Shlichta, J. G., Ragland, G. J. & Massie, K. R. Thermal reaction norms for caterpillar growth depend on diet. Evol. Ecol. Res. 8, 703–715 (2006).

    Google Scholar 

  • 46.

    Grayson, J., Edmunds, M., Evans, E. H. & Britton, G. Carotenoids and colouration of poplar hawkmoth caterpillars (Laothoe populi). Biol. J. Linn. Soc. 42, 457–465. https://doi.org/10.1111/j.1095-8312.1991.tb00574.x (1991).

    Article  Google Scholar 

  • 47.

    Core Team, R. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).

    Google Scholar 

  • 48.

    Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 159, 1-XI, https://doi.org/10.1016/j.anbehav.2019.11.002 (2020)

  • 49.

    U. K. Government, Guidance to the operation of the Animals (Scientific Procedures) 1986. ScotPIL manual—avian species. (2009).


  • Source: Ecology - nature.com

    Amanda Hubbard honored with Secretary of Energy’s Appreciation Award

    Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences