in

The ecological and genomic basis of explosive adaptive radiation

[adace-ad id="91168"]
  • 1.

    Otte, D. & Endler, J. Speciation and its Consequences (Sinauer, 1989).

  • 2.

    Coyne, J. A. & Orr, H. A. Speciation (Sinauer, 2004).

  • 3.

    Gavrilets, S. Fitness Landscapes and the Origin of Species (MPB-41) Vol. 41 (Princeton Univ. Press, 2004).

  • 4.

    Dieckmann, U., Doebeli, M., Metz, J. A. & Tautz, D. (eds) Adaptive Speciation (Cambridge Univ. Press, 2004).

  • 5.

    Mayr, E. & Diamond, J. M. The Birds of Northern Melanesia: Speciation, Ecology & Biogeography (Oxford Univ. Press, 2001).

  • 6.

    Nosil, P. Ecological Speciation (Oxford Univ. Press, 2012).

  • 7.

    Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176–192 (2014).

    CAS  Article  Google Scholar 

  • 8.

    Wolf, J. B. & Ellegren, H. Making sense of genomic islands of differentiation in light of speciation. Nat. Rev. Genet. 18, 87–100 (2017).

    CAS  Article  Google Scholar 

  • 9.

    Flaxman, S. M., Wacholder, A. C., Feder, J. L. & Nosil, P. Theoretical models of the influence of genomic architecture on the dynamics of speciation. Mol. Ecol. 23, 4074–4088 (2014).

    Article  Google Scholar 

  • 10.

    Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000).

  • 11.

    Marques, D. A., Meier, J. I. & Seehausen, O. A combinatorial view on speciation and adaptive radiation. Trends Ecol. Evol. 34, 531–544 (2019).

    Article  Google Scholar 

  • 12.

    Witte, F. & Van Oijen, M. J. P. Taxonomy, Ecology and Fishery of Lake Victoria Haplochromine Trophic Groups (Nationaal Natuurhistorisch Museum, 1990).

  • 13.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Harvey, M. G. & Rabosky, D. L. Continuous traits and speciation rates: alternatives to state-dependent diversification models. Methods Ecol. Evol. 9, 984–993 (2018).

    Article  Google Scholar 

  • 15.

    Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).

    Article  Google Scholar 

  • 17.

    Rabosky, D. L. & Goldberg, E. E. FiSSE: a simple nonparametric test for the effects of a binary character on lineage diversification rates. Evolution 71, 1432–1442 (2017).

    Article  Google Scholar 

  • 18.

    Jackson, P. B. N. The impact of predation, especially by the tiger-fish (Hydrocyon vittatus Cast.) on African freshwater fishes. Proc. Zool. Soc. Lond. 136, 603–622 (1961).

    Article  Google Scholar 

  • 19.

    Wagner, C. E., Harmon, L. J. & Seehausen, O. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487, 366–369 (2012).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    Article  Google Scholar 

  • 21.

    Turner, I., Garimella, K. V., Iqbal, Z. & McVean, G. Integrating long-range connectivity information into de Bruijn graphs. Bioinformatics 34, 2556–2565 (2018).

    CAS  Article  Google Scholar 

  • 22.

    Meier, J. I., et al. The coincidence of ecological opportunity with hybridization explains rapid adaptive radiation in Lake Mweru cichlid fishes. Nat. Commun. 10, 5391 (2019).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Trewavas, E. A Revision of the Genus Serranochromis Regan (Pisces, Cichlidae) (Musée royal de l’Afrique Centrale, 1964).

  • 24.

    Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Palamara, P. F., Lencz, T., Darvasi, A. & Pe’er, I. Length distributions of identity by descent reveal fine-scale demographic history. Am. J. Hum. Genet. 91, 809–822 (2012).

    CAS  Article  Google Scholar 

  • 26.

    Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

    CAS  Article  Google Scholar 

  • 27.

    Ralph, P. & Coop, G. The geography of recent genetic ancestry across Europe. PLoS Biol. 11, e1001555 (2013).

    CAS  Article  Google Scholar 

  • 28.

    Meier, J. I. et al. Demographic modelling with whole-genome data reveals parallel origin of similar Pundamilia cichlid species after hybridization. Mol. Ecol. 26, 123–141 (2017).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Streelman, J. T. & Danley, P. D. The stages of vertebrate evolutionary radiation. Trends Ecol. Evol. 18, 126–131 (2003).

    Article  Google Scholar 

  • 30.

    Gillespie, R. G. et al. Comparing adaptive radiations across space, time, and taxa. J. Hered. 111, 1–20 (2020).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    A national macroinvertebrate dataset collected for the biomonitoring of Ireland’s river network, 2007–2018

    Author Correction: Global status and conservation potential of reef sharks