in

The effect of slope aspect on vegetation attributes in a mountainous dry valley, Southwest China

  • 1.

    Daws, M. I., Mullins, C. E., Burslem, D. F. R. P., Paton, S. R. & Dalling, J. W. Topographic position affects the water regime in a semideciduous tropical forest in Panamá. Plant Soil 238, 79–89. https://doi.org/10.1023/A:1014289930621 (2002).

    CAS  Article  Google Scholar 

  • 2.

    Sundqvist, M. K., Sanders, N. J. & Wardle, D. A. Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 44, 261–280. https://doi.org/10.1146/annurev-ecolsys-110512-135750 (2013).

    Article  Google Scholar 

  • 3.

    Jucker, T. et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989–1000. https://doi.org/10.1111/ele.12964 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Moeslund, J. E., Arge, L., Bøcher, P. K., Dalgaard, T. & Svenning, J.-C. Topography as a driver of local terrestrial vascular plant diversity patterns. Nord. J. Bot. 31, 129–144. https://doi.org/10.1111/j.1756-1051.2013.00082.x (2013).

    Article  Google Scholar 

  • 5.

    Holland, P. G. & Steyn, D. G. Vegetational responses to latitudinal variations in slope angle and aspect. J. Biogeogr. 2, 179–183. https://doi.org/10.2307/3037989 (1975).

    Article  Google Scholar 

  • 6.

    Yetemen, O., Istanbulluoglu, E. & Duvall, A. R. Solar radiation as a global driver of hillslope asymmetry: Insights from an ecogeomorphic landscape evolution model. Water Resour. Res. 51, 9843–9861. https://doi.org/10.1002/2015wr017103 (2015).

    ADS  Article  Google Scholar 

  • 7.

    Bennie, J., Hill, M. O., Baxter, R. & Huntley, B. Influence of slope and aspect on long-term vegetation change in British chalk grasslands. J. Ecol. 94, 355–368. https://doi.org/10.1111/j.1365-2745.2006.01104.x (2006).

    Article  Google Scholar 

  • 8.

    Cantlon, J. E. Vegetation and microclimates on north and south slopes of Cushetunk Mountain, New Jersey. Ecol. Monogr. 23, 241–270. https://doi.org/10.2307/1943593 (1953).

    Article  Google Scholar 

  • 9.

    Warren, R. J. Mechanisms driving understory evergreen herb distributions across slope aspects: as derived from landscape position. Plant Ecol. 198, 297–308. https://doi.org/10.1007/s11258-008-9406-1 (2008).

    Article  Google Scholar 

  • 10.

    Bennie, J., Huntley, B., Wiltshire, A., Hill, M. O. & Baxter, R. Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecol. Model. 216, 47–59. https://doi.org/10.1016/j.ecolmodel.2008.04.010 (2008).

    Article  Google Scholar 

  • 11.

    Burnett, B. N., Meyer, G. A. & McFadden, L. D. Aspect-related microclimatic influences on slope forms and processes, northeastern Arizona. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2007jf000789 (2008).

    Article  Google Scholar 

  • 12.

    Geroy, I. J. et al. Aspect influences on soil water retention and storage. Hydrol. Process. 25, 3836–3842. https://doi.org/10.1002/hyp.8281 (2011).

    ADS  Article  Google Scholar 

  • 13.

    Huang, Y.-M., Liu, D. & An, S.-S. Effects of slope aspect on soil nitrogen and microbial properties in the Chinese Loess region. CATENA 125, 135–145. https://doi.org/10.1016/j.catena.2014.09.010 (2015).

    CAS  Article  Google Scholar 

  • 14.

    Lozano-García, B., Parras-Alcántara, L. & Brevik, E. C. Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas. Sci. Total Environ. 544, 963–970. https://doi.org/10.1016/j.scitotenv.2015.12.022 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 15.

    Rasmussen, C. & Tabor, N. J. Applying a quantitative pedogenic energy model across a range of environmental gradients. Soil Sci. Soc. Am. J. 71, 1719–1729. https://doi.org/10.2136/sssaj2007.0051 (2007).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Broxton, P. D., Troch, P. A. & Lyon, S. W. On the role of aspect to quantify water transit times in small mountainous catchments. Water Resour. Res. https://doi.org/10.1029/2008wr007438 (2009).

    Article  Google Scholar 

  • 17.

    Casanova, M., Messing, I. & Joel, A. Influence of aspect and slope gradient on hydraulic conductivity measured by tension infiltrometer. Hydrol. Process. 14, 155–164. https://doi.org/10.1002/(sici)1099-1085(200001)14:1%3c155::aid-hyp917%3e3.0.co;2-j (2000).

    ADS  Article  Google Scholar 

  • 18.

    Gutiérrez-Jurado, H. A., Vivoni, E. R., Istanbulluoglu, E. & Bras, R. L. Ecohydrological response to a geomorphically significant flood event in a semiarid catchment with contrasting ecosystems. Geophys. Res. Lett. https://doi.org/10.1029/2007gl030994 (2007).

    Article  Google Scholar 

  • 19.

    Wang, L., Wei, S., Horton, R. & Shao, M. A. Effects of vegetation and slope aspect on water budget in the hill and gully region of the Loess Plateau of China. CATENA 87, 90–100. https://doi.org/10.1016/j.catena.2011.05.010 (2011).

    Article  Google Scholar 

  • 20.

    Pook, E. & Moore, C. The influence of aspect on the composition and structure of dry sclerophyll forest on Black Mountain, Canberra. ACT. Aust. J. Bot. 14, 223–242. https://doi.org/10.1071/BT9660223 (1966).

    Article  Google Scholar 

  • 21.

    Armesto, J. J. & Martίnez, J. A. Relations between vegetation structure and slope aspect in the Mediterranean region of Chile. J. Ecol. 66, 881–889. https://doi.org/10.2307/2259301 (1978).

    Article  Google Scholar 

  • 22.

    Badano, E. I., Cavieres, L. A., Molina-Montenegro, M. A. & Quiroz, C. L. Slope aspect influences plant association patterns in the Mediterranean matorral of central Chile. J. Arid Environ. 62, 93–108. https://doi.org/10.1016/j.jaridenv.2004.10.012 (2005).

    ADS  Article  Google Scholar 

  • 23.

    Zapata-Rios, X., Brooks, P. D., Troch, P. A., McIntosh, J. & Guo, Q. Influence of terrain aspect on water partitioning, vegetation structure and vegetation greening in high-elevation catchments in northern New Mexico. Ecohydrology 9, 782–795. https://doi.org/10.1002/eco.1674 (2016).

    Article  Google Scholar 

  • 24.

    Poulos, H. M. & Camp, A. E. Topographic influences on vegetation mosaics and tree diversity in the Chihuahuan Desert Borderlands. Ecology 91, 1140–1151. https://doi.org/10.1890/08-1808.1 (2010).

    Article  PubMed  Google Scholar 

  • 25.

    Kutiel, P. & Lavee, H. Efffect of slope aspect on soil and vegetation properties along an aridity transect. Isr. J. Plant Sci. 47, 169. https://doi.org/10.1080/07929978.1999.10676770 (1999).

    Article  Google Scholar 

  • 26.

    Sternberg, M. & Shoshany, M. Influence of slope aspect on Mediterranean woody formations: comparison of a semiarid and an arid site in Israel. Ecol. Res. 16, 335–345. https://doi.org/10.1046/j.1440-1703.2001.00393.x (2001).

    Article  Google Scholar 

  • 27.

    Méndez-Toribio, M., Meave, J. A., Zermeño-Hernández, I. & Ibarra-Manríquez, G. Effects of slope aspect and topographic position on environmental variables, disturbance regime and tree community attributes in a seasonal tropical dry forest. J. Veg. Sci. 27, 1094–1103. https://doi.org/10.1111/jvs.12455 (2016).

    Article  Google Scholar 

  • 28.

    Gallardo-Cruz, J. A., Pérez-García, E. A. & Meave, J. A. β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landsc. Ecol. 24, 473–482. https://doi.org/10.1007/s10980-009-9332-1 (2009).

    Article  Google Scholar 

  • 29.

    Paudel, S. & Vetaas, O. R. Effects of topography and land use on woody plant species composition and beta diversity in an arid Trans-Himalayan landscape, Nepal. J. Mt. Sci. 11, 1112–1122. https://doi.org/10.1007/s11629-013-2858-3 (2014).

    Article  Google Scholar 

  • 30.

    Zhang, R. The Dry Valley of the Hengduan Mountains Regions (Science Press, Beijing, 1992).

    Google Scholar 

  • 31.

    Vegetation, E. B. O. S. Sichuan Vegetation (People’s Publishing House of Sichuan, Beijing, 1980).

    Google Scholar 

  • 32.

    Guan, W. et al. Vegetation classification and the main types of vegetation of the dry valley of Minjiang River. J. Mt. Res. 22, 679–686 (2004).

    Google Scholar 

  • 33.

    Ma, K.-M. et al. Multiple-scale soil moisture distribution and its implications for ecosystem restoration in an arid river valley, China. Land Degrad. Dev. 15, 75–85. https://doi.org/10.1002/ldr.584 (2004).

    CAS  Article  Google Scholar 

  • 34.

    Lu, T., Ma, K. M., Zhang, W. H. & Fu, B. J. Differential responses of shrubs and herbs present at the Upper Minjiang River basin (Tibetan Plateau) to several soil variables. J. Arid Environ. 67, 373–390. https://doi.org/10.1016/j.jaridenv.2006.03.011 (2006).

    ADS  Article  Google Scholar 

  • 35.

    Xu, X.-L., Ma, K.-M., Fu, B.-J., Song, C.-J. & Liu, W. Relationships between vegetation and soil and topography in a dry warm river valley, SW China. CATENA 75, 138–145. https://doi.org/10.1016/j.catena.2008.04.016 (2008).

    Article  Google Scholar 

  • 36.

    Solon, J., Degórski, M. & Roo-Zielińska, E. Vegetation response to a topographical-soil gradient. CATENA 71, 309–320. https://doi.org/10.1016/j.catena.2007.01.006 (2007).

    Article  Google Scholar 

  • 37.

    Birkeland, P. W. Soils and Geomorphology (Oxford University Press, Oxford, 1984).

    Google Scholar 

  • 38.

    Loik, M. E., Breshears, D. D., Lauenroth, W. K. & Belnap, J. A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA. Oecologia 141, 269–281. https://doi.org/10.1007/s00442-004-1570-y (2004).

    ADS  Article  PubMed  Google Scholar 

  • 39.

    Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220. https://doi.org/10.1007/s00442-004-1520-8 (2004).

    ADS  Article  PubMed  Google Scholar 

  • 40.

    Fernandez-Going, B. M., Harrison, S., Anacker, B. & Safford, H. Climate interacts with soil to produce beta diversity in Californian plant communities. Ecology 94, 2007–2018. https://doi.org/10.1890/12-2011.1 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    Araya, Y. N., Gowing, D. J. & Dise, N. Does soil nitrogen availability mediate the response of grassland composition to water regime?. J. Veg. Sci. 24, 506–517. https://doi.org/10.1111/j.1654-1103.2012.01481.x (2013).

    Article  Google Scholar 

  • 42.

    Araya, Y. N. et al. A fundamental, eco-hydrological basis for niche segregation in plant communities. New Phytol. 189, 253–258. https://doi.org/10.1111/j.1469-8137.2010.03475.x (2011).

    Article  PubMed  Google Scholar 

  • 43.

    Li, Y. J., Bao, W. K. & Wu, N. Spatial patterns of the soil seed bank and extant vegetation across the dry Minjiang River valley in southwest China. J. Arid Environ. 75, 1083–1089. https://doi.org/10.1016/j.jaridenv.2011.05.012 (2011).

    ADS  Article  Google Scholar 

  • 44.

    Li, F., Bao, W., Liu, J. & Wu, N. Eco-anatomical characteristics of Sophora davidii leaves along an elevation gradient in upper Minjiang River dry valley. Chin. J. Appl. Ecol. 17, 5–10 (2006).

    Google Scholar 

  • 45.

    Li, F., Bao, W. & Zhu, L. Species diversity and spatial distribution of legumes in the dry valley of Minjiang River, SW China. J. Mt. Sci. 1, 76–84 (2010).

    Google Scholar 

  • 46.

    Song, C. J. et al. Distribution patterns of shrubby N-fixers and non-N fixers in an arid valley in Southwest China: implications for ecological restoration. Ecol. Res. 25, 553–564. https://doi.org/10.1007/s11284-009-0685-3 (2010).

    Article  Google Scholar 

  • 47.

    Liu, G. et al. Aboveground biomass of main shrubs in dry valley of Minjiang River. Acta Ecol. Sin. 23, 1757–1764. https://doi.org/10.1023/A:1022289509702 (2003).

    Article  Google Scholar 

  • 48.

    Ellenberg, H. et al. Zeigerwerte von pflanzen in Mitteleuropa (1992).

  • 49.

    Shreve, F. Soil temperature as influenced by altitude and slope exposure. Ecology 5, 128–136. https://doi.org/10.2307/1929010 (1924).

    Article  Google Scholar 

  • 50.

    Gutiérrez-Jurado, H. A. et al. On the observed ecohydrologic dynamics of a semiarid basin with aspect-delimited ecosystems. Water Resour. Res. 49, 8263–8284. https://doi.org/10.1002/2013wr014364 (2013).

    Article  Google Scholar 

  • 51.

    Liu, G. et al. Distribution regulation of aboveground biomass of three main shrub types in the dry valley of Minjiang River. J. Mt. Sci. 21, 24–32 (2003).

    Google Scholar 

  • 52.

    Pugnaire, F. I. & Luque, M. T. Changes in plant interactions along a gradient of environmental stress. Oikos 93, 42–49. https://doi.org/10.1034/j.1600-0706.2001.930104.x (2001).

    Article  Google Scholar 

  • 53.

    Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity–biodiversity relationship. Nature 416, 427–430. https://doi.org/10.1038/416427a (2002).

    ADS  CAS  Article  Google Scholar 

  • 54.

    Sarr, D. A., Hibbs, D. E. & Huston, M. A. A hierarchical perspective of plant diversity. Q. Rev. Biol. 80, 187–212. https://doi.org/10.1086/433058 (2005).

    Article  PubMed  Google Scholar 

  • 55.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853. https://doi.org/10.1038/35002501 (2000).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 56.

    Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171. https://doi.org/10.1126/science.235.4785.167 (1987).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 57.

    Pang, X. Y., Bao, W. K. & Ning, W. U. Reasons of dry valley climate characteristic and its formation reason in upstream of Minjiang River. Resour. Environ. Yangtze Basin 17, 46–53 (2008).

    Google Scholar 

  • 58.

    Minchin, P. R. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69, 89–107. https://doi.org/10.1007/BF00038690 (1987).

    Article  Google Scholar 

  • 59.

    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x (1993).

    Article  Google Scholar 

  • 60.

    Oksanen, J. et al.vegan: Community Ecology Package. R package version 2.5-2. 2018 (2018).

  • 61.

    Wang, Y. J., Huang, C. D., Zhang, J., Yang, W. Q. & Wang, X. S. Species Diversity, biomass and their relationship of shrubberies in an arid valley of the Minjiang River. Arid Zone Res. 27, 567–572. https://doi.org/10.3724/SP.J.1077.2010.01263 (2010).

    CAS  Article  Google Scholar 

  • 62.

    Gotelli, N. J. & Colwell, R. K. Estimating species richness. In: Biological Diversity: Frontiers in Measurement and Assessment, Vol. 12 (eds Magurran, A. & McGill, B.) 39–54 (Oxford University Press, Oxford, 2011).

    Google Scholar 

  • 63.

    Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 345, 101–118 (1994).

    ADS  CAS  Article  Google Scholar 

  • 64.

    Smith, E. P. & van Belle, G. Nonparametric estimation of species richness. Biometrics 40, 119–129 (1984).

    Article  Google Scholar 

  • 65.

    Maurer, B. A. & McGill, B. J. In Biological Diversity: Frontiers in Measurement and Assessment (eds Magurran, A. E. & McGill, B. J.) 55–65 (Oxford University Press, Oxford, 2011).

  • 66.

    Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12, 42–58 (1943).

    Article  Google Scholar 

  • 67.

    Sørensen, T. A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. K. Dan. Vidensk. Selsk. Biol. Skr. 5, 1–34 (1948).

    Google Scholar 

  • 68.

    Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382. https://doi.org/10.1046/j.1365-2656.2003.00710.x (2003).

    Article  Google Scholar 

  • 69.

    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253. https://doi.org/10.1111/j.1541-0420.2005.00440.x (2006).

    MathSciNet  Article  PubMed  MATH  Google Scholar 

  • 70.

    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693. https://doi.org/10.1111/j.1461-0248.2006.00926.x (2006).

    Article  PubMed  Google Scholar 

  • 71.

    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).


  • Source: Ecology - nature.com

    Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts

    Geologists raise the speed limit for how fast continental crust can form