in

The first evidence for Late Pleistocene dogs in Italy

  • 1.

    Larson, G. et al. Rethinking dog domestication by integrating genetics, archaeology, and biogeography. Proc. Natl. Acad. Sci. U. S. A.109, 8878–8883 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Shannon, L. M. Genetic structure in village dogs reveals a Central Asian domestication origin. Proc. Natl. Acad. Sci. U. S. A.112, 13639–13644 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Skoglund, P., Ersmark, E., Palkopoulou, E. & Dalén, L. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr. Biol.25, 1–5 (2015).

    Google Scholar 

  • 4.

    Thalmann, O. et al. Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science342, 871–874 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Frantz, L. A. et al. Genomic and archaeological evidence suggests a dual origin of domestic dogs. Science352, 1228–1231 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 6.

    Germonpré, M. et al. Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. J. Archaeol. Sci.36, 473–490 (2009).

    Google Scholar 

  • 7.

    Germonpré, M. et al. Palaeolithic dogs and the early domestication of the wolf: a reply to the comments of Crockford and Kuzmin (2012). J. Archaeol. Sci.40, 786–792 (2013).

    Google Scholar 

  • 8.

    Gremonpré, M. et al. Palaeolithic dogs and Pleistocene wolves revisited: a reply to Morey (2014). J. Archaeol. Sci.54, 210–216 (2015).

    Google Scholar 

  • 9.

    Germonpré, M. et al. Palaeolithic and prehistoric dogs and Pleistocene wolves from Yakutia: identification of isolated skulls. J. Archaeol. Sci.78, 1–19 (2017).

    Google Scholar 

  • 10.

    Crockford, S. J. & Kuzmin, Y. V. Comments on Germonpré et al. (2012) Journal of Archaeological Science 36, 2009 “Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes”, and Germonpré, Lázki cková-Galetová, and Sablin, Journal of Archaeological Science 39, 2012 “Palaeolithic dog skulls at the Gravettian Predmostí site, the Czech Republic”. J. Archaeol. Sci.39, 2797–2801 (2012).

    Google Scholar 

  • 11.

    Morey, D. F. In search of Paleolithic dogs: a quest with mixed results. J. Archaeol. Sci.52, 300–307 (2014).

    CAS  Google Scholar 

  • 12.

    Botigué, L. R. et al. Ancient European dog genomes reveal continuity since the Early Neolithic. Nat. Commun.8, 16082 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Camarós, E., Münzel, S. C., Cueto, M., Rivals, F. & Conard, N. J. The evolution of Paleolithic hominin–carnivore interaction written in teeth: stories from the Swabian Jura (Germany). J. Archaeol. Sci.6, 798–809 (2016).

    Google Scholar 

  • 14.

    Ovodov, N. D. et al. A 33,000-year-old incipient dog from the Altai Mountains of Siberia: evidence of the earliest domestication disrupted by the Last Glacial Maximum. PLoS ONE6, e22821 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Sablin, M. & Khlopachev, G. The earliest Ice Age dogs: evidence from Eliseevichi. Curr. Anthropol.43, 795–799 (2002).

    Google Scholar 

  • 16.

    Boudadi-Maligne, M. & Escarguel, G. A biometric re-evaluation of recent claims for Early Upper Palaeolithic wolf domestication in Eurasia. J. Archaeol. Sci.45, 80–89 (2014).

    Google Scholar 

  • 17.

    Drake, A. G., Coquerelle, M. & Colombeau, G. 3D morphometric analysis of fossil canid skulls contradicts the suggested domestication of dogs during the late Paleolithic. Sci. Rep.5, 8299 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Morey, D. F. & Jeger, R. Paleolithic dogs: why sustained domestication then?. J. Archaeol. Sci.3, 420–428 (2015).

    Google Scholar 

  • 19.

    Napierala, H. & Uerpmann, H. P. A ‘new’ palaeolithic dog from central Europe. Intl. J. Osteoarchaeol.22, 127–137 (2012).

    Google Scholar 

  • 20.

    Perri, A. R. A wolf in dog’s clothing: initial dog domestication and Pleistocene wolf variation. J. Archaeol. Sci.68, 1–4 (2016).

    Google Scholar 

  • 21.

    Janssens, L. et al. A new look at an old dog: Bonn-Oberkassel reconsidered. J. Archaeol. Sci.92, 126–138 (2018).

    Google Scholar 

  • 22.

    Pionnier-Capitan, M. et al. New evidence for Upper Palaeolithic small domestic dogs in South-Western Europe. J. Archaeol. Sci.38, 2123–2140 (2011).

    Google Scholar 

  • 23.

    Boudadi-Maligne, M., Mallye, J. B., Langlais, M. & Barshay-Szdmit, C. Des restes de chiens magdaléniens à l’abri du Morin (Gironde, France) Implications socio-économiques d’une innovation zootechnique. Paleo23, 39–54 (2012).

    Google Scholar 

  • 24.

    Thalmann, O. & Perri, A. R. Paleogenomics 273–306 (Springer, Cham, 2018).

    Google Scholar 

  • 25.

    Mariotti Lippi, M., Foggi, B., Aranguren, B., Ronchitelli, A. & Revedin, A. Multistep food plant processing at Grotta Paglicci (Southern Italy) around 32,600 cal B.P.. Proc. Natl. Acad. Sci. U. S. A.112, 12075–12080 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Mezzena, F. & Palma di Cesnola, A. Industria acheulena “in situ” nei depositi esterni della Grotta Paglicci (Rignano Garganico – Foggia). Riv. Sci. Preist.26, 3–30 (1971).

    Google Scholar 

  • 27.

    Crezzini, J. et al. A spotted hyaena den in the Middle Palaeolithic of Grotta Paglicci (Gargano promontory, Apulia, Southern Italy). Archaeol. Anthropol. Sci.8, 227–240 (2016).

    Google Scholar 

  • 28.

    Palma di Cesnola, A. L’Aurignacien et le Gravettien ancien de la grotte Paglicci au Mont Gargano. L’Anthropologie110, 355–370 (2006).

    Google Scholar 

  • 29.

    PalmadiCesnola, A. Le Paléolithique supérieur en Italie (Jérôme Millon, Grenoble, 2001).

    Google Scholar 

  • 30.

    Berto, C., Boscato, P., Boschin, F., Luzi, E. & Ronchitelli, A. Paleoenvironmental and paleoclimatic context during the Upper Paleolithic (late Upper Pleistocene) in the Italian Peninsula. The small mammal record from Grotta Paglicci (Rignano Garganico, Foggia, Southern Italy). Quat. Sci. Rev.168, 30–41 (2017).

    ADS  Google Scholar 

  • 31.

    Boschin, F. et al. The palaeoecological meaning of macromammal remains from archaeological sites exemplified by the case study of Grotta Paglicci (Upper Palaeolithic, southern Italy). Quat. Res.90, 470–482 (2018).

    CAS  Google Scholar 

  • 32.

    Borgia, V., Boschin, F. & Ronchitelli, A. Bone and antler working at Grotta Paglicci (Rignano Garganico, Foggia, southern Italy). Quat. Int.403, 23–39 (2016).

    Google Scholar 

  • 33.

    Condemi, S. et al. I resti umani rinvenuti a Paglicci (Rignano Garganico – FG): nota preliminare. Annali dell’Uiversità di Ferrara, Museologia Scientifica e Naturalistica10(2), 233–238 (2014).

    Google Scholar 

  • 34.

    Arrighi, S., Borgia, V., d’Errico, F. & Ronchitelli, A. I ciottoli decorati di Paglicci: raffigurazioni e utilizzo. Riv. Sci. Preist.58, 39–58 (2008).

    Google Scholar 

  • 35.

    Arrighi, S., Borgia, V., d’Errico, F., Ricci, S. & Ronchitelli, A. Manifestazioni d’arte inedite e analisi tecnologica dell’arte mobiliare di Grotta Paglicci (Rignano Garganico – Foggia). Preist. Alpina46, 49–58 (2012).

    Google Scholar 

  • 36.

    Arrighi, S. et al. Grotta Paglicci (Rignano Garganico, Foggia): analisi sulle materie coloranti. Preist. Alpina46, 91–92 (2012).

    Google Scholar 

  • 37.

    Ronchitelli, A. et al. When technology joins symbolic behaviour: the gravettian burials at Grotta Paglicci (Rignano Garganico – Foggia – southern Italy). Quat. Int.359–360, 423–441 (2015).

    Google Scholar 

  • 38.

    Cassoli, P. F., Fiore, I. & Tagliacozzo, A. Butchering and exploitation of large mammals in the Epigravettian levels of Grotta Romanelli (Apulia, Italy). Anthropozoologica25–26, 309–318 (1997).

    Google Scholar 

  • 39.

    Sardella, R. et al. Grotta Romanelli (southern Italy, Apulia): legacies and issues in excavating a key site for the Pleistocene of the Mediterranean. Riv. Ital. Paleontol. Strat.124, 247–264 (2018).

    Google Scholar 

  • 40.

    Sardella, R. et al. Grotta Romanelli (Lecce, Southern Italy) between past and future: new studies and perspectives for an archaeo-geosite symbol of the Palaeolithic in Europe. Geoheritage11, 1413–1432 (2019).

    Google Scholar 

  • 41.

    Calcagnile, L. et al. New radiocarbon dating results from the Upper Paleolithic–Mesolithic levels in Grotta Romanelli (Apulia, southern Italy). Radiocarbon61, 1211–1220 (2019).

    CAS  Google Scholar 

  • 42.

    Cassoli, P.F., Gala, M. & Tagliacozzo, A. In Grotta Romanelli nel centenario della sua scoperta (1900–2000). Conference Proceedings (eds Fabbri, P.F., Ingravallo, E., Mangia, A.) 91–111 (Congedo Editore, Galatina, 2003).

  • 43.

    Tagliacozzo, A. Grotta Romanelli nel centenario della sua scoperta (1900–2000). Conference Proceedings (eds Fabbri, P.F., Ingravallo, E., Mangia, A.) 169–216 (Congedo Editore, Galatina, 2003).

  • 44.

    Boschin, F., Bernardini, F., Zanolli, C. & Tuniz, C. MicroCT imaging of red fox talus: a non-invasive approach to evaluate age at death. Archaeometry57, 194–211 (2015).

    CAS  Google Scholar 

  • 45.

    Boschin, F., Zanolli, C., Bernardini, F., Princivalle, F. & Tuniz, C. A Look from the inside: MicroCT analysis of burned bones. Ethnobiol. Lett.6, 41–49 (2015).

    Google Scholar 

  • 46.

    Geiger, M. et al. Unaltered sequence of dental, skeletal, and sexual maturity in domestic dogs compared to the wolf. Zool. Lett.2, 16 (2016).

    Google Scholar 

  • 47.

    Payne, S. & Bull, G. Components of variation in measurements of pig bones and teeth, and the use of measurements to distinguish wild from domestic pig remains. Archaeozoologia2, 27–66 (1988).

    Google Scholar 

  • 48.

    Zanolli, C. et al. Inner tooth morphology of Homo erectus from Zhoukoudian. New evidence from an old collection housed at Uppsala University, Sweden. J. Hum. Evol.116, 1–13 (2018).

    PubMed  Google Scholar 

  • 49.

    Zanolli, C. et al. Evidence for increased hominid diversity in the Early to Middle Pleistocene of Indonesia. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-019-0860-z (2019).

    Article  PubMed  Google Scholar 

  • 50.

    Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE5, e14004 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Hefner, R. & Geffen, E. Group size and home range of the Arabian wolf (Canis lupus) in Southern Israel. J. Mammal.80, 611–619 (1999).

    Google Scholar 

  • 52.

    Gaubert, P. et al. Reviving the African Wolf Canis lupus lupaster in North and West Africa: a mitochondrial lineage ranging more than 6,000 km wide. PLoS ONE7, e42740 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Prothero, D. R. et al. Size and shape stasis in late Pleistocene mammals and birds from Rancho La Brea during the Last Glacial-Interglacial cycle. Quat. Sci. Rev.56, 1–10 (2012).

    ADS  Google Scholar 

  • 54.

    Payne, S. Paleolithic site of Douara Cave and Paleogeography of Palmyra Basin in Syria, part III: animal bones and further analysis of archeological materials 1–108 (University of Tokyo Press, Tokyo, 1983).

    Google Scholar 

  • 55.

    Mecozzi, B. & Lucenti, S. B. The Late Pleistocene Canis lupus (Canidae, Mammalia) from Avetrana (Apulia, Italy): reappraisal and new insights on the European glacial wolves, I. J. Geosci.137, 138–150 (2018).

    Google Scholar 

  • 56.

    Rustioni, M., Ferretti, M. P., Mazza, P., Pavia, M. & Varola, A. The vertebrate fauna from Cardamone (Apulia, southern Italy): an example of Mediterranean mammoth fauna. Deinsea9, 395–404 (2003).

    Google Scholar 

  • 57.

    Sardella, R. et al. The wolf from Grotta Romanelli (Apulia, Italy) and its implications in the evolutionary history of Canis lupus in the Late Pleistocene of Southern Italy. Quat. Int.328–329, 179–195 (2014).

    Google Scholar 

  • 58.

    Trut, L. N. The Genetics of the Dog 15–42 (CABI Publishing, New York, 2001).

    Google Scholar 

  • 59.

    Hare, B., Wobber, V. & Wrangham, R. The self-domestication hypothesis: evolution of bonobo psychology is due to selection against aggression. Anim. Behav.83, 573–585 (2012).

    Google Scholar 

  • 60.

    Lord, K. A., Larson, G., Coppinger, R. P. & Karlsson, E. The history of farm foxes undermines the animal domestication syndrome. Trends Ecol.35, 125–136 (2020).

    Google Scholar 

  • 61.

    Marshall-Pescini, S., Cafazzo, S., Virány, Z. & Range, F. Integrating social ecology in explanation of wolf-dog behavioural differences. Curr. Opin. Behav. Sci.16, 80–86 (2017).

    Google Scholar 

  • 62.

    Leonard, J. A., Vilà, C., Fox-Dobbs, K., Koch, P. L. & Wayne, R. K. Megafaunal extinctions and the disappearance of a specialized wolf ecomorph. Curr. Biol.17, 1146–1150 (2007).

    CAS  PubMed  Google Scholar 

  • 63.

    Hare, B., Brown, M., Williamson, C. & Tommasello, M. The domestication of social cognition in dogs. Science298, 1634–1636 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • 64.

    Wobber, V. et al. Breed differences in domestic dogs’ (Canis familiaris) comprehension of human communicative signals. Interact. Stud.10, 206–224 (2009).

    Google Scholar 

  • 65.

    Riedel, A. I resti animali della grotta delle Ossa (Škocjan). Atti del Museo Civico di Storia Naturale di Trieste30, 125–208 (1977).

    Google Scholar 

  • 66.

    Detry, C. & Cardoso, J. L. On some remains of dog (Canis familiaris) from the Mesolithic shell-middens of Muge, Portugal. J. Archaeol. Sci.37, 2762–2774 (2010).

    Google Scholar 

  • 67.

    von den Driesch, A. A guide to measurement of animal bones from archaeological sites. Peabody Mus. Bull.1, 1–148 (1976).

    Google Scholar 

  • 68.

    Tuniz, C. et al. The ICTP-Elettra X-ray laboratory for cultural heritage and archaeology. Nucl. Instrum. Methods Phys. Res. A711, 106–110 (2013).

    ADS  CAS  Google Scholar 

  • 69.

    Fajardo, R. J., Ryan, T. M. & Kappelman, J. Assessing the accuracy of high resolution X-ray computed tomography of primate trabecular bone by comparisons with histological sections. Am. J. Phys. Anthropol.118, 1–10 (2002).

    PubMed  Google Scholar 

  • 70.

    Coleman, M. N. & Colbert, M. W. CT thresholding protocols for taking measurements on three-dimensional models. Am. J. Phys. Anthropol.133, 723–725 (2007).

    PubMed  Google Scholar 

  • 71.

    Bouxsein, M. et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res.25, 1468–1486 (2010).

    PubMed  Google Scholar 

  • 72.

    Shipman, P., Foster, G. & Schoeninger, M. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. J. Archaeol. Sci.11, 307–325 (1984).

    Google Scholar 

  • 73.

    Ghezzo, E. & Rook, L. Cuon alpinus (Pallas, 1811) (Mammalia, Carnivora) from Equi (Late Pleistocene, Massa-Carrara, Italy): anatomical analysis and palaeoethological contextualisation. Rend. Fis. Acc. Lincei25, 492–504 (2014).

    Google Scholar 

  • 74.

    Gunz, P. & Mitteroecker, P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix24, 103–109 (2013).

    Google Scholar 

  • 75.

    Adams, D.C., Collyer, D.L., Kaliontzopoulou, A. & Sherratt, E. Geomorph: software for geometric morphometric analyses. R package version 3.0.5. https://cran.r-project.org/package=geomorph (2017).

  • 76.

    Schlager, S. Statistical Shape and Deformation Analysis 217–256 (Academic Press, London, 2017).

    Google Scholar 

  • 77.

    Mitteroecker, P. & Bookstein, F. L. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol. Biol.38, 100–114 (2011).

    Google Scholar 

  • 78.

    Dray, S. & Dufour, A. B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw.22, 1–20 (2007).

    Google Scholar 

  • 79.

    Bookstein, F. L. Morphometric Tools for Landmark Data: Geometry and Biology (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  • 80.

    Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. U. S. A.110, 15758–15763 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 81.

    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5448 (2010).

    Article  PubMed  Google Scholar 

  • 82.

    Peltzer, G. et al. EAGER: efficient ancient genome reconstruction. Genome Biol.17, 60 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 83.

    Kim, K. S., Lee, S. E., Jeong, H. W. & Ha, J. H. The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome. Mol. Phylogenet. Evol.10, 210–220 (1998).

    CAS  PubMed  Google Scholar 

  • 84.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 85.

    Schubert, M. et al. Improving ancient DNA read mapping against modern reference genomes. BMC Genom.13, 178 (2012).

    CAS  Google Scholar 

  • 86.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 87.

    Jonsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics29, 1682–1684 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 88.

    Loog, L. et al. Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia. Mol Ecol.00, 1–15. https://doi.org/10.1111/mec.15329 (2019).

    Article  Google Scholar 

  • 89.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol.33, 1870–1874 (2016).

    CAS  PubMed  Google Scholar 

  • 90.

    Edgar, C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res.32, 1792–1797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 91.

    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol.10, e1003537 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 92.

    Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. Tracer v1.6. https://tree.bio.ed.ac.uk/software/tracer (2014)

  • 93.

    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon51, 337–360 (2009).

    Google Scholar 

  • 94.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon55, 1869–1887 (2013).

    CAS  Google Scholar 

  • 95.

    Street, M., Napierala, H. & Janssens, L. The late Palaeolithic dog from Bonn-Oberkassel in context. Rheinische Ausgrabungen72, 253–274 (2015).

    Google Scholar 

  • 96.

    Bronk Ramsey, C., Higham, T., Bowles, A. & Hedges, R. Improvements to the pretreatment of bones at Oxford. Radiocarbon46(1), 155–163 (2004).

    Google Scholar 

  • 97.

    Fedi, M. E., Cartocci, A., Manetti, M., Taccetti, F. & Mandò, P. A. The 14C AMS facility at LABEC, Florence. Nucl. Instrum. Methods Phys. Res. B259, 18–22 (2007).

    ADS  CAS  Google Scholar 

  • 98.

    Boschin, F. Exploitation of carnivores, lagomorphs and rodents at Grotta Paglicci during the Epigravettian: the dawn of a new subsistence strategy?. J. Archaeol. Sci. Rep.26, 101871 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    When the chemical industry met modern architecture

    MIT Energy Conference goes virtual