in

The invasive butterbur contaminates stream and seepage water in groundwater wells with toxic pyrrolizidine alkaloids

  • 1.

    Andersen, H. C. Den grimme ælling. In Nye Eventyr. Første Bind. Første Samling (C.A. Reitzels Forlag, 1843).

  • 2.

    Brøndegaard, V. J. Folk og flora: dansk etnobotanik (Rosenkilde og Bagger, 1987).

  • 3.

    Giles, M. et al. Butterbur. J. Herb. Pharmacother. 5, 119–143 (2009).

    Google Scholar 

  • 4.

    Aydin, A. A., Zerbes, V., Parlar, H. & Letzel, T. The medical plant butterbur (Petasites): analytical and physiological (re)view. J. Pharm. Biomed. Anal. 75, 220–229 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Giversen, I., Brimer, L., & Kristiansen, B. Danmarks Vilde Lægeplanter (Gyldendal A/S, 2014).

  • 6.

    Asen, A. Plants of possible monastic origin, growing in the past or present, at medieval monastery grounds in Norway. In Plants and Culture: Seeds of the Cultural Heritage of Europe (ed. Morel, J.P.) 227–238 (Edipuglia, 2009).

  • 7.

    Solberg, S. O. More than just weeds. NordGen’s work with Cultural Relict Plants and Bernt Løjtnant’s inventories from Denmark (Nordic Genetic Resource Center, 2014).

  • 8.

    Thomet, O. A., Wiesmann, U. N., Blaser, K. & Simon, H. U. Differential inhibition of inflammatory effector functions by petasin, isopetasin and neopetasin in human eosinophils. Clin. Exp. Allergy 31, 1310–1320 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 9.

    Sutherland, A. & Sweet, B. V. Butterbur: an alternative therapy for migraine prevention. Am. J. Health Syst. Pharm. 67, 705–711 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 10.

    Benemei, S., De Logu, F., Li, Puma, S., Marone, I.M., Coppi, E., Ugolini, F., Liedtke, W., Pollastro, F., Appendino, G., Geppetti, P., Materazzi, S., Nassini, R. The anti-migraine component of butterbur extracts, isopetasin, desensitizes peptidergic nociceptors by acting on TRPA1 cation channel. Br J Pharmacol. 174, 2897–2911 (2017).

  • 11.

    Anderson, N. & Borlak, J. Hepatobiliary events in migraine therapy with herbs: the case of petadolex, a petasites hybridus extract. J. Clin. Med. 8, 652 (2019).

    CAS  Article  PubMed Central  Google Scholar 

  • 12.

    Kozlov, V., Lavrenova, G., Savlevich, E. & Bazarkina, K. Evidence-based phytotherapy in allergicrhinitis rhinitis. Clin. Phytosci. 4, 1–8 (2018).

    Article  CAS  Google Scholar 

  • 13.

    Avula, B., Wang, Y. H., Wang, M., Smillie, T. J. & Khan, I. A. Simultaneous determination of sesquiterpenes and pyrrolizidine alkaloids from the rhizomes of Petasites hybridus (L.) GM et Sch and dietary supplements using UPLC-UV and HPLC-TOF-MS methods. J. Pharm. Biomed. Anal. 70, 53–63 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 14.

    Kalin, P. The common butterbur (Petasites hybridus)—portrait of a medicinal herb. Forsch Komplementarmed Klass Naturheilkd 10, 41–44 (2003).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Roberts, M. F. & Wink, M. Alkaloids: Biochemistry, Ecology, and Medicinal Applications (Springer, Berlin, 1998).

    Google Scholar 

  • 16.

    Aniszewski, T. Alkaloids: Chemistry, Biology, Ecology, and Applications 2nd edn. (Elsevier, Hoboken, 2015).

    Google Scholar 

  • 17.

    International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Some Traditional Herbal Medicines, Somemycotoxins, Naphthalene and Styrene (IARC Press, Lyon, 2002).

    Google Scholar 

  • 18.

    Xia, Q., He, X., Ma, L., Chen, S. & Fu, P. P. Pyrrolizidine alkaloid secondary pyrrolic metabolites construct multiple activation pathways leading to DNA adduct formation and potential liver tumor initiation. Chem. Res. Toxicol. 31, 619–628 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 19.

    Yang, L. & Stockigt, J. Trends for diverse production strategies of plant medicinal alkaloids. Nat. Prod. Rep. 27, 1469–1479 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Wang, T. et al. Pyrrolizidine alkaloids in honey: quantification with and without standards. Food Control 98, 227–237 (2019).

    CAS  Article  Google Scholar 

  • 21.

    Scholtz, S., MacMorris, L., Krogmann, F. & Auffarth, G. U. Poisons, drugs and medicine: on the use of atropine and scopolamine in medicine and ophthalmology: an historical review of their applications. J. Eye Stud. Treat. 1, 51–58 (2019).

    Google Scholar 

  • 22.

    Matolcsy, G., Nadasy, M. & Andriska, V. Pesticide Chemistry 32nd edn. (Elsevier, Hoboken, 1989).

    Google Scholar 

  • 23.

    Dembitsky, V. M., Gloriozova, T. A. & Poroikov, V. V. Naturally occurring plant isoquinoline N-oxide alkaloids: their pharmacological and SAR activities. Phytomedicine 22, 183–202 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Europen Food Safety Authority. Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA Journal. https://www.efsa.europa.eu/en/efsajournal/pub/4908 (2017).

  • 25.

    European Medicines Agency, Committee on Herbal Medicinal Products. Public Statement on Contamination of Herbal Medicinal Products/Traditional Herbal Medicinal Products with Pyrrolizidine Alkaloids—Transitional Recommendations for Risk Management and Quality Control. https://www.ema.europa.eu/en/documents/public-statement/public-statement-contamination-herbal-medicinal-products/traditional-herbal-medicinal-products-pyrrolizidine-alkaloids_en.pdf (2016).

  • 26.

    López-Pacheco, I. Y. et al. Anthropogenic contaminants of high concern: existence in water resources and their adverse effects. Sci. Total Environ. 690, 1068–1088 (2019).

    ADS  Article  CAS  PubMed  Google Scholar 

  • 27.

    Angeles, L. F. & Aga, D. S. Catching the elusive persistent and mobile organic compounds: novel sample preparation and advanced analytical techniques. Trends Environ. Anal. Chem. 25, e00078 (2020).

    CAS  Article  Google Scholar 

  • 28.

    Reemtsma, T. et al. Mind the gap: persistent and mobile organic compounds—water contaminants that slip through. Environ. Sci. Technol. 50, 10308–10315 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 29.

    Furlong, E. T. et al. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States: pharmaceuticals. Sci. Total Environ. 579, 1629–1642 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Boxall, A. B. A. The environmental side effects of medication. EMBO Rep. 5, 1110–1116 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Gao, J. et al. Stability of alcohol and tobacco consumption biomarkers in a real rising main sewer. Water Res. 138, 19–26 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Lian, L., Yan, S., Yao, B., Chan, S. & Song, W. Photochemical transformation of nicotine in wastewater effluent. Environ. Sci. Technol. 51, 11718–11730 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Stuart, M., Lapworth, D., Crane, E. & Hart, A. Review of risk from potential emerging contaminants in UK groundwater. Sci. Total Environ. 416, 1–21 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Turner, R. D. R., Warne, M. S., Dawes, L. A., Thompson, K. & Will, G. D. Greywater irrigation as a source of organic micro-pollutants to shallow groundwater and nearby surface water. Sci. Total Environ. 669, 570–578 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Robertson, J. & Stevens, K. Pyrrolizidine alkaloids. Nat. Prod. Rep. 31, 1721–1788 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Rosemann, G. M., Botha, C. J. & Eloff, J. N. Distinguishing between toxic and non-toxic pyrrolizidine alkaloids and quantification by liquid chromatography–mass spectrometry. Phytochem. Lett. 8, 126–131 (2014).

    CAS  Google Scholar 

  • 37.

    European Medicines Agency, Committee on Herbal Medicinal Products. Public Statement on the Use of Herbal Medicinal Products Containing Toxic, Unsaturated Pyrrolizidine Alkaloids (PAs). https://www.ema.europa.eu/en/use-herbal-medicinal-products-containing-toxic-unsaturated-pyrrolizidine-alkaloids-pas (2014).

  • 38.

    Prakash, A. S., Pereira, T. N., Reilly, P. E. & Seawright, A. A. Pyrrolizidine alkaloids in human diet. Mutat. Res. 433, 53–67 (1999).

    Google Scholar 

  • 39.

    Bolechova, M., Caslavsky, J., Pospichalova, M. & Kosubova, P. UPLC-MS/MS method for determination of selected pyrrolizidine alkaloids in feed. Food Chem. 170, 265–270 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    van Egmond, H. P. Natural toxins: risks, regulations and the analytical situation in Europe. Anal. Bioanal. Chem. 378, 1152–1160 (2004).

    Article  CAS  PubMed  Google Scholar 

  • 41.

    Hoogenboom, L. A. P. et al. Carry-over of pyrrolizidine alkaloids from feed to milk in dairy cows. Food Addit. Contam. A 28, 359–372 (2011).

    CAS  Article  Google Scholar 

  • 42.

    Mattocks, A.R. Chemistry and toxicology of pyrrolizidine alkaloids. Academic Pr. (1986).

  • 43.

    Molyneux, R. J., Gardner, D. L., Colegate, S. M. & Edgar, J. A. Pyrrolizidine alkaloid toxicity in livestock: a paradigm for human poisoning?. Food Addit. Contam. A 28, 293–307 (2011).

    CAS  Article  Google Scholar 

  • 44.

    Ebmeyer, J. et al. Human CYP3A4-mediated toxification of the pyrrolizidine alkaloid lasiocarpine. Food Chem. Toxicol. 130, 79–88 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 45.

    He, X. et al. Primary and secondary pyrrolic metabolites of pyrrolizidine alkaloids form DNA adducts in human A549 cells. Toxicol. In Vitro 54, 286–294 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 46.

    Chen, T., Mei, N. & Fu, P. P. Genotoxicity of pyrrolizidine alkaloids. J. Appl. Toxicol. 30, 183–196 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Huxtable, R. J. Activation and pulmonary toxicity of pyrrolizidine alkaloids. Pharmacol. Therapeut. 47, 371–389 (1990).

    CAS  Article  Google Scholar 

  • 48.

    McLean, E. K. The toxic actions of pyrrolizidine senecio-D alkaloids. Pharmacol. Ther. 47, 371–389 (1990).

    Google Scholar 

  • 49.

    Mori, H. et al. Some toxic properties of a carcinogenic pyrrolizidine alkaloid, petasitenine. J. Toxicol. Sci. 9, 143–149 (1984).

    CAS  Article  PubMed  Google Scholar 

  • 50.

    European Food Safety Authority. Scientific opinion on pyrrolizidine alkaloids in food and feed. EFSA J. 9, 2406 (2011).

    Article  CAS  Google Scholar 

  • 51.

    Wang, Y. P., Yan, J., Fu, P. P. & Chou, M. W. Human liver microsomal reduction of pyrrolizidine alkaloid N-oxides to form the corresponding carcinogenic parent alkaloid. Toxicol. Lett. 155, 411–420 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 52.

    Yang, M. et al. Intestinal and hepatic biotransformation of pyrrolizidine alkaloid N-oxides to toxic pyrrolizidine alkaloids. Arch. Toxicol. 93, 2197–2209 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Chou, M. W. et al. Riddelliine N-oxide is a phytochemical and mammalian metabolite with genotoxic activity that is comparable to the parent pyrrolizidine alkaloid riddelliine. Toxicol. Lett. 145, 239–247 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 54.

    Xia, Q., Chou, M. W., Kadlubar, F. F., Chan, P. C. & Fu, P. P. Human liver microsomal metabolism and DNA adduct formation of the tumorigenic pyrrolizidine alkaloid, riddelliine. Chem. Res. Toxicol. 16, 66–73 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 55.

    Moreira, R., Pereira, D. M., Valentao, P. & Andrade, P. Pyrrolizidine alkaloids: chemistry, pharmacology, toxicology and food safety. Int. J. Mol. Sci. 19, 1668 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  • 56.

    Edgar, J. A., Colegate, S. M., Boppre, M. & Molyneux, R. J. Pyrrolizidine alkaloids in food: a spectrum of potential health consequences. Food Addit. Contam. A 28, 308–324 (2011).

    CAS  Article  Google Scholar 

  • 57.

    International Programme on Chemical Safety (WHO). Pyrrolizidine Alkaloids. Environmental Health Criteria 80 (1988).

  • 58.

    European Medicines Agency. Committee on Herbal Medicinal Products (HMPC), EMA/HMPC/893108/2011 Rev. 1. Public statement on the use of herbal medicinal products containing toxic, unsaturated pyrrolizidine alkaloids (PAs) including recommendations regarding contamination of herbal medicinal products with pyrrolizidine alkaloids (2020).

  • 59.

    Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (United Kingdom). COT Statement on Pyrrolizidine Alkaloids in Food (2008).

  • 60.

    Chen, L. H. et al. Simultaneous determination and risk assessment of pyrrolizidine alkaloids in Artemisia capillaris Thunb by UPLC-MS/MS together with chemometrics. Molecules 24, 1077 (2019).

    CAS  Article  PubMed Central  Google Scholar 

  • 61.

    The German Federal Institute for Risk Assessment (BfR) (in German: Bundesinstitut für Risikobewertung). Analytik und Toxizität von Pyrrolizidinalkaloiden sowie eine Einschätzung des gesundheitlichen Risikos durch deren Vorkommen in Honig (2013).

  • 62.

    The German Federal Institute for Risk Assessment (in German: Bundesinstitut für Risikobewertung). Updated risk assessment on levels of 1,2-unsaturated pyrrolizidine alkaloids (2020).

  • 63.

    The German Federal Institute for Risk Assessment (in German: Bundesinstitut für Risikobewertung). Frequently asked questions on pyrrolizidine alkaloids in foods (2020).

  • 64.

    Kopp, T., Abdel-Tawab, M. & Mizaikoff, B. Extracting and analyzing pyrrolizidine alkaloids in medicinal plants: a review. Toxins. 12, 320 (2020).

    CAS  Article  PubMed Central  Google Scholar 

  • 65.

    Smith, L. W. & Culvenor, C. C. Plant sources of hepatotoxic pyrrolizidine alkaloids. J. Nat. Prod. 44, 129–152 (1981).

    CAS  Article  PubMed  Google Scholar 

  • 66.

    Edgar, J. A., Roeder, E. & Molyneux, R. J. Honey from plants containing pyrrolizidine alkaloids: a potential threat to health. J. Agric. Food Chem. 50, 2719–2730 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 67.

    Kempf, M., Reinhard, A. & Beuerle, T. Pyrrolizidine alkaloids (PAs) in honey and pollen-legal regulation of PA levels in food and animal feed required. Mol. Nutr. Food Res. 54, 158–168 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 68.

    Dubecke, A., Beckh, G. & Lullmann, C. Pyrrolizidine alkaloids in honey and bee pollen. Food Addit. Contam. A 28, 348–358 (2011).

    CAS  Article  Google Scholar 

  • 69.

    Gottschalk, C. et al. Spread of Jacobaea vulgaris and occurrence of pyrrolizidine alkaloids in regionally produced honeys from Northern Germany: inter- and intra-site variations and risk assessment for special consumer groups. Toxins 12, 1–19 (2020).

    Article  CAS  Google Scholar 

  • 70.

    Hama, J. R. & Strobel, B. W. Pyrrolizidine alkaloids quantified in soil and water using UPLC-MS/MS. RSC Adv. 9, 30350–30357 (2019).

    CAS  Article  Google Scholar 

  • 71.

    Selmar, D. et al. Horizontal natural product transfer: intriguing insights into a newly discovered phenomenon. J. Agric. Food Chem. 67, 8740–8745 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 72.

    Gunthardt, B. F. et al. “Is there anybody else out there?”—First insights from a suspect screening for phytotoxins in surface water. Chimia 74, 129–135 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 73.

    Schonsee, C. D. & Bucheli, T. D. Experimental Determination of octanol−water partition coefficients of selected natural toxins. J. Chem. Eng. 65, 1946–1953 (2020).

    CAS  Google Scholar 

  • 74.

    Ellegaard-Jensen, L., Horemans, B., Raes, B., Aamand, J. & Hansen, L. H. Groundwater contamination with 2,6-dichlorobenzamide (BAM) and perspectives for its microbial removal. Appl. Microbiol. Biotechnol. 101, 5235–5245 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 75.

    Stuart, M., Lapwortha, D., Cranea, E. & Hart, A. Review of risk from potential emerging contaminants in UK groundwater. Sci. Total Environ. 416, 1–21 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Lapworth, D. J., Baran, N., Stuart, M. E. & Ward, R. S. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ. Pollut. 163, 287–303 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 77.

    Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration.

  • 78.

    Bucheli, T. D. Phytotoxins: environmental micropollutants of concern?. Environ. Sci. Technol. 48, 13027–13033 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 79.

    Wink, M. & Hartmann, T. Sites of enzymatic synthesis of quinolizidine alkaloids and their accumulation in Lupinus polyphyllus. Zeitschrift für Pflanzenphysiologie 102, 337–344 (1981).

    CAS  Google Scholar 

  • 80.

    Hama, J. R. & Strobel, B. W. Natural alkaloids from narrow-leaf and yellow lupins transfer to soil and soil solution in agricultural fields. Environ. Sci. Eur. 32, 126 (2020).

    CAS  Article  Google Scholar 

  • 81.

    Anonymous. Solanine poisoning. Br. Med. J. 2, 1458–1459. https://doi.org/10.1136/bmj.2.6203.1458-a (1979).

    Article  Google Scholar 

  • 82.

    Aichinger, G., Pantazi, F. & Marko, D. Combinatory estrogenic effects of bisphenol A in mixtures with alternariol and zearalenone in human endometrial cells. Toxicol. Lett. 319, 242–249 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 83.

    Gunthardt, B. F., Hollender, J., Hungerbuhler, K., Scheringer, M. & Bucheli, T. D. Comprehensive toxic plants–phytotoxins database and its application in assessing aquatic micropollution potential. J. Agric. Food Chem. 66, 7577–7588 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 84.

    Global Biodiversity Information Facility. https://www.gbif.org/species/9490132. Accessed 6th February 2020.

  • 85.

    Hama, J.R. & Strobel, B.W. Occurrence of pyrrolizidine alkaloids in ragwort plants, soils and surface waters at the field scale in Grassland. Sci. Total Environ (Article reference:STOTEN_142822) (Accepted). Available online 16 October 2020, 142822 (2020).


  • Source: Ecology - nature.com

    Researchers using environmental DNA must engage ethically with Indigenous communities

    Commercializing next-generation nuclear energy technology