in

The network structure and eco-evolutionary dynamics of CRISPR-induced immune diversification

  • 1.

    Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).

    CAS  PubMed  Google Scholar 

  • 2.

    van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745–763 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Mayer, A., Mora, T., Rivoire, O. & Walczak, A. M. Diversity of immune strategies explained by adaptation to pathogen statistics. Proc. Natl Acad. Sci. USA 113, 8630–8635 (2016).

    CAS  PubMed  Google Scholar 

  • 4.

    Chevallereau, A., Meaden, S., van Houte, S., Westra, E. R. & Rollie, C. The effect of bacterial mutation rate on the evolution of CRISPR–Cas adaptive immunity. Philos. Trans. R. Soc. Lond. B 374, 20180094 (2019).

    CAS  Google Scholar 

  • 5.

    Gurney, J., Pleška, M. & Levin, B. R. Why put up with immunity when there is resistance: an excursion into the population and evolutionary dynamics of restriction–modification and CRISPR–Cas. Philos. Trans. R. Soc. Lond. B 374, 20180096 (2019).

    CAS  Google Scholar 

  • 6.

    Weitz, J. S. et al. Phage–bacteria infection networks. Trends Microbiol. 21, 82–91 (2013).

    CAS  PubMed  Google Scholar 

  • 7.

    Gurney, J. et al. Network structure and local adaptation in co-evolving bacteria-phage interactions. Mol. Ecol. 26, 1764–1777 (2017).

    CAS  PubMed  Google Scholar 

  • 8.

    Fortuna, M. A. et al. Coevolutionary dynamics shape the structure of bacteria-phage infection networks. Evolution 73, 1001–1011 (2019).

    PubMed  Google Scholar 

  • 9.

    Krasnov, B. R. et al. Phylogenetic signal in module composition and species connectivity in compartmentalized host-parasite networks. Am. Nat. 179, 501–511 (2012).

    PubMed  Google Scholar 

  • 10.

    Pilosof, S. et al. Host–parasite network structure is associated with community-level immunogenetic diversity. Nat. Commun. 5, 5172 (2014).

    CAS  PubMed  Google Scholar 

  • 11.

    Dallas, T. & Cornelius, E. Co-extinction in a host-parasite network: identifying key hosts for network stability. Sci. Rep. 5, 13185 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Pilosof, S., Morand, S., Krasnov, B. R. & Nunn, C. L. Potential parasite transmission in multi-host networks based on parasite sharing. PLoS ONE 10, e0117909 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 13.

    Vázquez, D. P., Poulin, R., Krasnov, B. R. & Shenbrot, G. I. Species abundance and the distribution of specialization in host–parasite interaction networks. J. Anim. Ecol. 74, 946–955 (2005).

    Google Scholar 

  • 14.

    Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).

    PubMed  Google Scholar 

  • 15.

    Flores, C. O., Meyer, J. R., Valverde, S., Farr, L. & Weitz, J. S. Statistical structure of host–phage interactions. Proc. Natl Acad. Sci. USA 108, E288–E297 (2011).

    CAS  PubMed  Google Scholar 

  • 16.

    Beckett, S. J. & Williams, H. T. P. Coevolutionary diversification creates nested-modular structure in phage–bacteria interaction networks. Interface Focus 3, 20130033 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    He, Q. et al. Networks of genetic similarity reveal non-neutral processes shape strain structure in Plasmodium falciparum. Nat. Commun. 9, 1817 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 18.

    Pilosof, S. et al. Competition for hosts modulates vast antigenic diversity to generate persistent strain structure in plasmodium falciparum. PLoS Biol. 17, e3000336 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    van der Oost, J., Westra, E. R., Jackson, R. N. & Wiedenheft, B. Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat. Rev. Microbiol. 12, 479–492 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Childs, L. M., Held, N. L., Young, M. J., Whitaker, R. J. & Weitz, J. S. Multiscale model of CRISPR-induced coevolutionary dynamics: diversification at the interface of Lamarck and Darwin. Evolution 66, 2015–2029 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Paez-Espino, D. et al. CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus. mBio 6, e00262-15 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 22.

    van Houte, S. et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532, 385–388 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Daly, R. A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).

    CAS  PubMed  Google Scholar 

  • 24.

    Pauly, M. D., Bautista, M. A., Black, J. A. & Whitaker, R. J. Diversified local CRISPR–Cas immunity to viruses of Sulfolobus islandicus. Philos. Trans. R. Soc. Lond. B 374, 20180093 (2019).

    CAS  Google Scholar 

  • 25.

    Childs, L. M., England, W. E., Young, M. J., Weitz, J. S. & Whitaker, R. J. CRISPR-induced distributed immunity in microbial populations. PLoS ONE 9, e101710 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178 (2011).

    Google Scholar 

  • 27.

    Held, N. L., Herrera, A., Cadillo-Quiroz, H. & Whitaker, R. J. CRISPR associated diversity within a population of Sulfolobus islandicus. PLoS ONE 5, e12988 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    England, W. E., Kim, T. & Whitaker, R. J. Metapopulation structure of CRISPR–Cas immunity in Pseudomonas aeruginosa and its viruses. mSystems 3, e00075-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Marvig, R. L., Sommer, L. M., Molin, S. & Johansen, H. K. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat. Genet. 47, 57–64 (2015).

    CAS  PubMed  Google Scholar 

  • 30.

    Pirnay, J.-P. et al. Pseudomonas aeruginosa population structure revisited. PLoS ONE 4, e7740 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Hall, A. R., Scanlan, P. D., Morgan, A. D. & Buckling, A. Host–parasite coevolutionary arms races give way to fluctuating selection. Ecol. Lett. 14, 635–642 (2011).

    PubMed  Google Scholar 

  • 32.

    Levin, B. R., Moineau, S., Bushman, M. & Barrangou, R. The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity. PLoS Genet. 9, e1003312 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Koskella, B. & Brockhurst, M. A. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38, 916–931 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Weissman, J. L. et al. Immune loss as a driver of coexistence during host-phage coevolution. ISME J. 12, 585–597 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Braga, L. P. P., Soucy, S. M., Amgarten, D. E., da Silva, A. M. & Setubal, J. C. Bacterial diversification in the light of the interactions with phages: the genetic symbionts and their role in ecological speciation. Front. Ecol. Evol. 6, 6 (2018).

    Google Scholar 

  • 36.

    Fontaine, C. et al. The ecological and evolutionary implications of merging different types of networks. Ecol. Lett. 14, 1170–1181 (2011).

    PubMed  Google Scholar 

  • 37.

    Gupta, S. & Day, K. P. A strain theory of malaria transmission. Parasitol. Today 10, 476–481 (1994).

    CAS  PubMed  Google Scholar 

  • 38.

    Buckee, C. O., Recker, M., Watkins, E. R. & Gupta, S. Role of stochastic processes in maintaining discrete strain structure in antigenically diverse pathogen populations. Proc. Natl Acad. Sci. USA 108, 15504–15509 (2011).

    CAS  PubMed  Google Scholar 

  • 39.

    Artzy-Randrup, Y. et al. Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum. eLife 1, e00093 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Zinder, D., Bedford, T., Gupta, S. & Pascual, M. The roles of competition and mutation in shaping antigenic and genetic diversity in influenza. PLoS Pathog. 9, e1003104 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Song, C., Rohr, R. P. & Saavedra, S. Why are some plant–pollinator networks more nested than others? J. Anim. Ecol. 86, 1417–1424 (2017).

    PubMed  Google Scholar 

  • 42.

    Chabas, H. et al. Evolutionary emergence of infectious diseases in heterogeneous host populations. PLoS Biol. 16, e2006738 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Iranzo, J., Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR–Cas in an explicit ecological context. J. Bacteriol. 195, 3834–3844 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Staniczenko, P. P. A., Kopp, J. C. & Allesina, S. The ghost of nestedness in ecological networks. Nat. Commun. 4, 1391 (2013).

    PubMed  Google Scholar 

  • 45.

    Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proc. Natl Acad. Sci. USA 105, 1118–1123 (2008).

    CAS  PubMed  Google Scholar 

  • 46.

    Rosvall, M., Axelsson, D. & Bergstrom, C. T. The map equation. Eur. Phys. J. Spec. Top. 178, 13–23 (2010).

    Google Scholar 

  • 47.

    Farage, C., Edler, D., Eklöf, A., Rosvall, M. & Pilosof, S. A dynamical perspective to community detection in ecological networks. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2020.04.14.040519v1 (2020).

  • 48.

    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).

    CAS  Google Scholar 

  • 49.

    Lancichinetti, A. & Fortunato, S. Community detection algorithms: a comparative analysis. Phys. Rev. E 80, 056117 (2009).

    Google Scholar 

  • 50.

    Campbell, K. M. et al. Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs. Environ. Microbiol. 19, 2334–2347 (2017).

    PubMed  Google Scholar 

  • 51.

    Bautista, M. A., Black, J. A., Youngblut, N. D. & Whitaker, R. J. Differentiation and structure in Sulfolobus islandicus rod-shaped virus populations. Viruses 9, 120 (2017).

    PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    A controllable membrane to pull carbon dioxide out of exhaust streams

    More than a meal