in

The resilience of weed seedbank regulation by carabid beetles, at continental scales, to alternative prey

  • 1.

    Begg, G. S. et al. A functional overview of conservation biological control. Crop Prot. 97, 145–158 (2017).

    Article  Google Scholar 

  • 2.

    Shields, M. W. et al. History, current situation and challenges for conservation biological control. Biol. Control 131, 25–35 (2019).

    Article  Google Scholar 

  • 3.

    Petit, S., Boursault, A. & Bohan, D. A. Weed seed choice by carabid beetles (Coleoptera: Carabidae): Linking field measurements with laboratory diet assessments. Eur. J. Entomol. 111, 1–6 (2014).

    Article  Google Scholar 

  • 4.

    Saska, P., Honěk, A. & Martinková, Z. Preferences of carabid beetles (Coleoptera: Carabidae) for herbaceous seeds. Acta Zool. Acad. Sci. Hung. 65, 57–76 (2019).

    Article  Google Scholar 

  • 5.

    Honěk, A., Martinkova, Z., Saska, P. & Pekar, S. Size and taxonomic constraints determine the seed preferences of Carabidae (Coleoptera). Basic Appl. Ecol. 8, 343–353 (2007).

    Article  Google Scholar 

  • 6.

    Honěk, A., Martinkova, Z. & Jarosik, V. Ground beetles (Carabidae) as seed predators. Eur. J. Entomol. 100, 531–544 (2003).

    Article  Google Scholar 

  • 7.

    Kulkarni, S. S., Dosdall, L. M. & Willenborg, C. J. The role of ground beetles (Coleoptera: Carabidae) in weed seed consumption: A review. Weed Sci. 63, 355–376 (2015).

    Article  Google Scholar 

  • 8.

    Petit, S., Trichard, A., Biju-Duval, L., McLaughlin, B. & Bohan, D. A. Interactions between conservation agricultural practice and landscape composition promote weed seed predation by invertebrates. Agric. Ecosyst. Environ. 240, 45–53 (2017).

    Article  Google Scholar 

  • 9.

    Kromp, B. Carabid beetles in sustainable agriculture: A review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyst. Environ. 74, 187–228 (1999).

    Article  Google Scholar 

  • 10.

    Firbank, L. G. & Watkinson, A. R. On the analysis of competition within two-species mixtures of plants. J. Appl. Ecol. 22, 503–517 (1985).

    Article  Google Scholar 

  • 11.

    Westerman, P. R. et al. Are many little hammers effective? Velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems. Weed Sci. 53, 382–392 (2005).

    CAS  Article  Google Scholar 

  • 12.

    Petit, S. et al. Biodiversity-based options for arable weed management. A review. Agron. Sustain. Dev. 38, 48 (2018).

    Article  Google Scholar 

  • 13.

    Westerman, P. R., Dixon, P. M. & Liebman, M. Burial rates of surrogate seeds in arable fields. Weed Res. 49, 142–152 (2009).

    Article  Google Scholar 

  • 14.

    Trichard, A., Ricci, B., Ducourtieux, C. & Petit, S. The spatio-temporal distribution of weed seed predation differs between conservation agriculture and conventional tillage. Agric. Ecosyst. Environ. 188, 40–47 (2014).

    Article  Google Scholar 

  • 15.

    Carbonne, B., Bohan, D. A. & Petit, S. Key carabid species drive spring weed seed predation of Viola arvensis. Biol. Control 141, 104148 (2020).

    CAS  Article  Google Scholar 

  • 16.

    Westerman, P. R., Wes, J. S., Kropff, M. J. & Van Der Werf, W. Annual losses of weed seeds due to predation in organic cereal fields. J. Appl. Ecol. 40, 824–836 (2003).

    Article  Google Scholar 

  • 17.

    Blubaugh, C. K. & Kaplan, I. Invertebrate seed predators reduce weed emergence following seed rain. Weed Sci. 64, 80–86 (2016).

    Article  Google Scholar 

  • 18.

    Pannwitt, H., Westerman, P. R. & Gerowitt, B. Post-dispersal seed predation can limit the number of seedlings of Echinochloa crus-galli. Biol. Control 143, 95–98 (2019).

    Google Scholar 

  • 19.

    Bohan, D. A., Boursault, A., Brooks, D. R. & Petit, S. National-scale regulation of the weed seedbank by carabid predators. J. Appl. Ecol. 48, 888–898 (2011).

    Article  Google Scholar 

  • 20.

    Saska, P., Van Der Werf, W., De Vries, E. & Westerman, P. R. Spatial and temporal patterns of carabid activity-density in cereals do not explain levels of predation on weed seeds. Bull. Entomol. Res. 98, 169–181 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 21.

    Mauchline, A. L., Watson, S. J., Brown, V. K. & Froud-Williams, R. J. Post-dispersal seed predation of non-target weeds in arable crops. Weed Res. 45, 157–164 (2005).

    Article  Google Scholar 

  • 22.

    Davis, A. S. & Raghu, S. Weighing abiotic and biotic influences on weed seed predation. Weed Res. 50, 402–412 (2010).

    Article  Google Scholar 

  • 23.

    Davis, A. S., Taylor, E. C., Haramoto, E. R. & Renner, K. A. Annual postdispersal weed seed predation in contrasting field environments. Weed Sci. 61, 296–302 (2013).

    CAS  Article  Google Scholar 

  • 24.

    Lövei, G. L. & Szentkiralyi, F. Carabids climbing maize plants. Z. Angew. Entomol. 97, 107–110 (1984).

    Article  Google Scholar 

  • 25.

    Frei, B., Guenay, Y., Bohan, D. A., Traugott, M. & Wallinger, C. Molecular analysis indicates high levels of carabid weed seed consumption in cereal fields across Central Europe. J. Pest Sci. 2004(92), 935–942 (2019).

    Article  Google Scholar 

  • 26.

    Roubinet, E. et al. High redundancy as well as complementary prey choice characterize generalist predator food webs in agroecosystems. Sci. Rep. 8, 8054 (2018).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Staudacher, K. et al. Habitat heterogeneity induces rapid changes in the feeding behaviour of generalist arthropod predators. Funct. Ecol. 32, 809–819 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Evans, E. W. Multitrophic interactions among plants, aphids, alternate prey and shared natural enemies – A review. Eur. J. Entomol. 105, 369–380 (2008).

    Article  Google Scholar 

  • 29.

    Snyder, W. E. Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biol. Control 135, 73–82 (2019).

    Article  Google Scholar 

  • 30.

    Harwood, J. D. et al. Invertebrate biodiversity affects predator fitness and hence potential to control pests in crops. Biol. Control 51, 499–506 (2009).

    Article  Google Scholar 

  • 31.

    Chailleux, A., Mohl, E. K., Teixeira Alves, M., Messelink, G. J. & Desneux, N. Natural enemy-mediated indirect interactions among prey species: Potential for enhancing biocontrol services in agroecosystems. Pest Manag. Sci. 70, 1769–1779 (2014).

  • 32.

    von Berg, K., Thies, C., Tscharntke, T. & Scheu, S. Cereal aphid control by generalist predators in presence of belowground alternative prey: Complementary predation as affected by prey density. Pedobiologia (Jena). 53, 41–48 (2009).

    Article  Google Scholar 

  • 33.

    Mair, J. & Port, G. R. Predation by the carabid beetles Pterostichus madidus and Nebria brevicollis is affected by size and condition of the prey slug Deroceras reticulatum. Agric. For. Entomol. 3, 99–106 (2001).

    Article  Google Scholar 

  • 34.

    Symondson, W. O. C. et al. Biodiversity vs. biocontrol: positive and negative effects of alternative prey on control of slugs by carabid beetles. Bull. Entomol. Res. 96, 637–645 (2006).

  • 35.

    Prasad, R. P. & Snyder, W. E. Polyphagy complicates conservation biological control that targets generalist predators. J. Appl. Ecol. 43, 343–352 (2006).

    Article  Google Scholar 

  • 36.

    Renkema, J. M., Lynch, D. H., Cutler, G. C., MacKenzie, K. & Walde, S. J. Predation by Pterostichus melanarius (Illiger) (Coleoptera: Carabidae) on immature Rhagoletis mendax Curran (Diptera: Tephritidae) in semi-field and field conditions. Biol. Control 60, 46–53 (2012).

    Article  Google Scholar 

  • 37.

    Roubinet, E. et al. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey. Ecol. Appl. 27, 1167–1177 (2017).

    Article  Google Scholar 

  • 38.

    Honěk, A., Saska, P. & Martinkova, Z. Seasonal variation in seed predation by adult carabid beetles. Entomol. Exp. Appl. 118, 157–162 (2006).

    Article  Google Scholar 

  • 39.

    Talarico, F., Giglio, A., Pizzolotto, R. & Brandmayr, P. A synthesis of feeding habits and reproduction rhythm in Italian seed-feeding ground beetles (Coleoptera: Carabidae). Eur. J. Entomol. 113, 325–336 (2016).

    Article  Google Scholar 

  • 40.

    Charalabidis, A., Dechaume-Moncharmont, F.-X., Carbonne, B., Bohan, D. A. & Petit, S. Diversity of foraging strategies and responses to predator interference in seed-eating carabid beetles. Basic Appl. Ecol. 36, 13–24 (2019).

    Article  Google Scholar 

  • 41.

    Pilipaviius, V. Weed seed rain dynamics and ecological control ability in agrophytocenosis. in Herbicides—Advances in Research (ed. Price, A.) 51–83 (InTech, 2013). https://doi.org/10.5772/55972.

  • 42.

    Saska, P., Koprdová, S., Martinková, Z. & Honěk, A. Comparing methods of weed seed exposure to predators. Ann. Appl. Biol. 164, 301–312 (2014).

    Article  Google Scholar 

  • 43.

    Johnson, N. E. & Cameron, R. S. Phytophagous ground beetles. Ann. Entomol. Soc. Am. 62, 909–914 (1969).

    Article  Google Scholar 

  • 44.

    Russell, M. C., Lambrinos, J., Records, E. & Ellen, G. Seasonal shifts in ground beetle (Coleoptera: Carabidae) species and functional composition maintain prey consumption in Western Oregon agricultural landscapes. Biol. Control 106, 54–63 (2017).

    Article  Google Scholar 

  • 45.

    Williams, C. L. et al. Over-winter predation of Abutilon theophrasti and Setaria faberi seeds in arable land. Weed Res. 49, 439–447 (2009).

    Article  Google Scholar 

  • 46.

    Westerman, P., Luijendijk, C. D., Wevers, J. D. A. & Van Der Werf, W. Weed seed predation in a phenologically late crop. Weed Res. 51, 157–164 (2011).

    Article  Google Scholar 

  • 47.

    Winder, L. et al. Predatory activity and spatial pattern: The response of generalist carabids to their aphid prey. J. Anim. Ecol. 74, 443–454 (2005).

    Article  Google Scholar 

  • 48.

    Bohan, D. A. et al. Spatial dynamics of predation by carabid beetles on slugs. J. Anim. Ecol. 69, 367–379 (2000).

    Article  Google Scholar 

  • 49.

    Frank, S. D., Shrewsbury, P. M. & Denno, R. F. Plant versus prey resources: Influence on omnivore behavior and herbivore suppression. Biol. Control 57, 229–235 (2011).

    Article  Google Scholar 

  • 50.

    Abrams, P. A. & Matsuda, H. Positive indirect effects between prey species that share predators. Ecology 77, 610–616 (1996).

    Article  Google Scholar 

  • 51.

    Boetzl, F. A., Konle, A. & Krauss, J. Aphid cards – Useful model for assessing predation rates or bias prone nonsense?. J. Appl. Entomol. 144, 74–80 (2020).

    Article  Google Scholar 

  • 52.

    Bilde, T. & Toft, S. Consumption by carabid beetles of three cereal aphid species relative to other prey types. Entomophaga 42, 21–32 (1997).

    Article  Google Scholar 

  • 53.

    Madsen, M., Terkildsen, S. & Toft, S. Microcosm studies on control of aphids by generalist arthropod predators: Effects of alternative prey. Biocontrol 49, 483–504 (2004).

    Article  Google Scholar 

  • 54.

    Fawki, S. & Toft, S. Food preferences and the value of animal food for the carabid beetle Amara similata (Gyll.) (Col., Carabidae). J. Appl. Entomol. 129, 551–556 (2005).

  • 55.

    Saska, P. Effect of diet on the fecundity of three carabid beetles. Physiol. Entomol. 33, 188–192 (2008).

    ADS  Article  Google Scholar 

  • 56.

    Haschek, C., Drapela, T., Schuller, N., Fiedler, K. & Frank, T. Carabid beetle condition, reproduction and density in winter oilseed rape affected by field and landscape parameters. J. Appl. Entomol. 136, 665–674 (2012).

    Article  Google Scholar 

  • 57.

    Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. Can generalist predators be effective biocontrol agents?. Annu. Rev. Entomol. 47, 561–594 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 58.

    Lundgren, J. G. Chapter 18: Biological control of weed seeds in agriculture using omnivorous insects. in Relationships of Natural Enemies and Non-Prey Foods 333–351 (Springer Netherlands, 2009).

  • 59.

    Löbl, I. & Smetana, A. Catalogue of Palaearctic Colcoptera. Vol. 1 (2003).

  • 60.

    Homburg, K., Homburg, N., Schäfer, F., Schuldt, A. & Assmann, T. Carabids.org—A dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers. 7, 195–205 (2014).

  • 61.

    Penell, A., Raub, F. & Höfer, H. Estimating biomass from body size of European spiders based on regression models. J. Arachnol. 46, 413 (2018).

    Article  Google Scholar 

  • 62.

    Pey, B. et al. A thesaurus for soil invertebrate trait-based approaches. PLoS ONE 9, e108985 (2014).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Nentwig, W., Blick, T., Gloor, D., Hänggi, A. & Kropf, C. Araneae: Spiders of Europe. https://araneae.nmbe.ch, https://www.araneae.nmbe.ch (2019).

  • 64.

    Caballero, M., Baquero, E., Ariño, A. H. & Jordana, R. Indirect biomass estimations in Collembola. Pedobiologia (Jena). 48, 551–557 (2004).

    Article  Google Scholar 

  • 65.

    Migui, S. M. & Lamb, R. J. Sources of variation in the interaction between three cereal aphids (Hemiptera: Aphididae) and wheat (Poaceae). Bull. Entomol. Res. 96, 235–241 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 66.

    Brooks, D. R. et al. Invertebrate responses to the management of genetically modified herbicide-tolerant and conventional spring crops. I. Soil-surface-active invertebrates. Philos. Trans. R. Soc. B Biol. Sci. 358, 1847–1862 (2003).

  • 67.

    Bohan, D. A. et al. Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape. Proc. R. Soc. B Biol. Sci. 272, 463–474 (2005).

    Article  Google Scholar 

  • 68.

    John, F. & Weisberg, S. An R Companion to Applied Regression. (Sage, 2019).

  • 69.

    Long, J. jtools: Analysis and Presentation of Social Scientific Data. R package version 2.0.1. (2019).

  • 70.

    Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. (2020).

  • 71.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 72.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org (2019).


  • Source: Ecology - nature.com

    Pushing the envelope with fusion magnets

    Environmental Solutions Initiative puts sustainability front and center at the MIT career fair