in

The role of fire disturbance on habitat structure and bird communities in South Brazilian Highland Grasslands

  • 1.

    White, R., Murray, S. & Rohweder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems (World Resources Institute, Washington, 2000).

    Google Scholar 

  • 2.

    Overbeck, G. E. et al. Brazil’s neglected biome: The south Brazilian Campos. Perspect. Plant Ecol. Evol. Syst. 9, 101–116 (2007).

    Article  Google Scholar 

  • 3.

    Wilson, J. B., Peet, R. K., Dengler, J. & Pärtel, M. Plant species richness: The world records. J. Veg. Sci. 23, 796–802 (2012).

    Article  Google Scholar 

  • 4.

    Dengler, J., Janišová, M. & Wellstein, C. Biodiversity of palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).

    Article  Google Scholar 

  • 5.

    Gibson, D. J. Grasses and Grassland Ecology (Oxford University Press, Oxford, 2009).

    Google Scholar 

  • 6.

    Būhning-Gaese, K. Determinants of avian species richness at different spatial scales. J. Biogeogr. 24, 49–60 (1997).

    Article  Google Scholar 

  • 7.

    Andrade, B. O. et al. Vascular plant species richness and distribution in the Río de la Plata grasslands. Bot. J. Linn. Soc. 188, 250–256 (2018).

    Google Scholar 

  • 8.

    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188 (2003).

    Article  Google Scholar 

  • 9.

    Reynolds, C. & Symes, C. T. Grassland bird response to vegetation structural heterogeneity and clearing of invasive bramble. Afr. Zool. 48, 228–239 (2013).

    Article  Google Scholar 

  • 10.

    Hovick, T. J., Elmore, R. D., Fuhlendorf, S. D., Engle, D. M. & Hamilton, R. G. Spatial heterogeneity increases diversity and stability in grassland bird communities. Ecol. Appl. 25, 662–672 (2015).

    Article  PubMed  Google Scholar 

  • 11.

    Bond, W. J. & Van Wilgen, B. W. Fire and Plants (Springer, New York, 2012).

    Google Scholar 

  • 12.

    Laterra, P., Vignolio, O. R., Linares, M. P., Giaquinta, A. & Maceira, N. Cumulative effects of fire on a tussock pampa grassland. J. Veg. Sci. 14, 43–54 (2003).

    Article  Google Scholar 

  • 13.

    Pillar, V. D. P. & Quadros, F. Grassland-forest boundaries in Southern Brazil. In Conference on Recent Shifts in Vegetation Boundaries of Deciduous Forests, Especially Due to General Global Warming 301–316 (Birkhäuser Basel, 1999). https://doi.org/10.1007/978-3-0348-8722-9_17

  • 14.

    Overbeck, G. E., Müller, S. C., Pillar, V. D. & Pfadenhauer, J. Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. J. Veg. Sci. 16, 655–664 (2005).

    Article  Google Scholar 

  • 15.

    Loydi, A., Funk, F. A. & García, A. Vegetation recovery after fire in mountain grasslands of Argentina. J. Mt. Sci. 17, 373–383 (2020).

    Article  Google Scholar 

  • 16.

    Altesor, A., Oesterheld, M., Leoni, E., Lezama, F. & Rodríguez, C. Effect of grazing on community structure and productivity of a Uruguayan grassland. Plant Ecol. 179, 83–91 (2005).

    Article  Google Scholar 

  • 17.

    López‐Mársico, L., Lezama, F. & Altesor, A. Heterogeneity decreases as time since fire increases in a South American grassland. Appl. Veg. Sci. avsc.12521 (2020). doi:https://doi.org/10.1111/avsc.12521

  • 18.

    Pickett, S. T. A., Kolasa, J., Armesto, J. J. & Collins, S. L. The Ecological Concept of Disturbance and Its Expression at Various Hierarchical Levels. Oikos 54, 129 (1989).

    Article  Google Scholar 

  • 19.

    Grime, J. P. Plant strategies and vegetation processes (Plant Strateg. Veg, Process, 1979).

    Google Scholar 

  • 20.

    Senft, R. L. et al. Large herbivore foraging and ecological hierarchies. Bioscience 37, 789–799 (1987).

    Article  Google Scholar 

  • 21.

    Coughenour, M. B. Spatial components of plant-herbivore interactions in pastoral, ranching, and native ungulate ecosystems. Rangel. Ecol. Manag./J. Range Manag. Arch. 44(6), 530–542 (1991)

  • 22.

    Bond, W. J. & Keeley, J. E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).

    Article  PubMed  Google Scholar 

  • 23.

    Bond, W. J. & Parr, C. L. Beyond the forest edge: Ecology, diversity and conservation of the grassy biomes. Biol. Conserv. 143, 2395–2404 (2010).

    Article  Google Scholar 

  • 24.

    Gibson, D. J. & Hulbert, L. C. Effects of fire, topography and year-to-year climatic variation on species composition in tallgrass prairie. Vegetatio 72, 175–185 (1987).

    Google Scholar 

  • 25.

    Vincent, C. A queima dos campos. Rev. Ind. Anim 3, 286–299 (1935).

    Google Scholar 

  • 26.

    Overbeck, G. E. & Pfadenhauer, J. Adaptive strategies in burned subtropical grassland in southern Brazil. Flora Morphol. Distrib. Funct. Ecol. Plants 202, 27–49 (2007).

    Article  Google Scholar 

  • 27.

    Quadros, F. L. F. & de Pillar, V. P. Dinâmica vegetacional em pastagem natural submetida a tratamentos de queima e pastejo. Ciência Rural. St. Maria 31, 863–868 (2001).

    Article  Google Scholar 

  • 28.

    Rodríguez, C., Leoni, E., Lezama, F. & Altesor, A. Temporal trends in species composition and plant traits in natural grasslands of Uruguay. J. Veg. Sci. 14, 433–440 (2003).

    Article  Google Scholar 

  • 29.

    Swengel, A. B. A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodivers. Conserv. 10, 1141–1169 (2001).

    Article  Google Scholar 

  • 30.

    Fuhlendorf, S. D. et al. Should heterogeneity be the basis for conservation? Grassland bird response to fire and grazing. Ecol. Appl. 16, 1706–1716 (2006).

    Article  PubMed  Google Scholar 

  • 31.

    Joern, A. & Laws, A. N. Ecological mechanisms underlying arthropod species diversity in grasslands. Annu. Rev. Entomol. 58, 19–36 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 32.

    Podgaiski, L. R. et al. Spider trait assembly patterns and resilience under fire-induced vegetation change in south Brazilian grasslands. PLoS ONE 8, e60207 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Pausas, J. G. Generalized fire response strategies in plants and animals. Oikos 128, 147–153 (2019).

    Article  Google Scholar 

  • 34.

    Williams, P. R., Congdon, R. A., Grice, A. C. & Clarke, P. J. Germinable soil seed banks in a tropical savanna: Seasonal dynamics and effects of fire. Aust. Ecol. 30, 79–90 (2005).

    Article  Google Scholar 

  • 35.

    Ooi, M. K. J. Delayed emergence and post-fire recruitment success: Effects of seasonal germination, fire season and dormancy type. Aust. J. Bot. 58, 248–256 (2010).

    Article  Google Scholar 

  • 36.

    Canadell, J. & Zedler, P. H. Underground structures of woody plants in mediterranean ecosystems of Australia, California, and Chile. In 177–210 (Springer, New York, NY, 1995). https://doi.org/10.1007/978-1-4612-2490-7_8

  • 37.

    Fidelis, A., Appezzato-da-Glória, B., Pillar, V. D. & Pfadenhauer, J. Does disturbance affect bud bank size and belowground structures diversity in Brazilian subtropical grasslands?. Flora Morphol. Distrib. Funct. Ecol. Plants 209, 110–116 (2014).

    Article  Google Scholar 

  • 38.

    Fidelis, A. T. et al. Fire intensity and severity in Brazilian campos grasslands. Interciencia Rev. Cienc. y Tecnol. Am. 35, 739–745 (2010).

    Google Scholar 

  • 39.

    Oliveira, J. M. & Pillar, V. D. Vegetation dynamics on mosaics of Campos and Araucaria forest between 1974 and 1999 in Southern Brazil. Commun. Ecol. 5, 197–202 (2004).

    Article  Google Scholar 

  • 40.

    Lezama, F. et al. Variation of grazing-induced vegetation changes across a large-scale productivity gradient. J. Veg. Sci. 25, 8–21 (2014).

    Article  Google Scholar 

  • 41.

    Ferreira, P. M. A. et al. Long-term ecological research in southern Brazil grasslands: Effects of grazing exclusion and deferred grazing on plant and arthropod communities. PLoS ONE 15, e0227706 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 42.

    Van Auken, O. W. Shrub invasions of north american semiarid grasslands. Annu. Rev. Ecol. Syst. 31, 197–215 (2000).

    Article  Google Scholar 

  • 43.

    Guido, A., Salengue, E. & Dresseno, A. Effect of shrub encroachment on vegetation communities in Brazilian forest-grassland mosaics. Perspect. Ecol. Conserv. 15, 52–55 (2017).

    Google Scholar 

  • 44.

    Sühs, R. B., Giehl, E. L. H. & Peroni, N. Preventing traditional management can cause grassland loss within 30 years in southern Brazil. Sci. Rep. 10, 1–9 (2020).

    Article  CAS  Google Scholar 

  • 45.

    Moretti, M. & Legg, C. Combining plant and animal traits to assess community functional responses to disturbance. Ecography (Cop.) 32, 299–309 (2009).

    Article  Google Scholar 

  • 46.

    Gerisch, M., Agostinelli, V., Henle, K. & Dziock, F. More species, but all do the same: Contrasting effects of flood disturbance on ground beetle functional and species diversity. Oikos 121, 508–515 (2012).

    Article  Google Scholar 

  • 47.

    McIntyre, S., Lavorel, S. & Tremont, R. M. Plant life-history attributes: Their Relationship to disturbance response in herbaceous vegetation. J. Ecol. 83, 31 (1995).

    Article  Google Scholar 

  • 48.

    Casas, G., Darski, B., Ferreira, P. M. A., Kindel, A. & Müller, S. C. Habitat structure influences the diversity, richness and composition of bird assemblages in successional atlantic rain forests. Trop. Conserv. Sci. 9, 503–524 (2016).

    Article  Google Scholar 

  • 49.

    Mackey, R. L. & Currie, D. J. The diversity–disturbance relationship: Is it generally strong and peaked?. Ecology 82, 3479–3492 (2001).

    Google Scholar 

  • 50.

    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science (80-. ) 199, 1302–1310 (1978).

    ADS  CAS  Article  Google Scholar 

  • 51.

    Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).

    Article  Google Scholar 

  • 52.

    Grime, J. P. Competitive exclusion in herbaceous vegetation. Nature 242, 344–347 (1973).

    ADS  Article  Google Scholar 

  • 53.

    Fox, J. W. The intermediate disturbance hypothesis should be abandoned. Trends Ecol. Evol. 28, 86–92 (2013).

    Article  PubMed  Google Scholar 

  • 54.

    Milchunas, D. G., Sala, O. E. & Lauenroth, W. K. A Generalized model of the effects of grazing by large herbivores on grassland community structure. Am. Nat. 132, 87–106 (1988).

    Article  Google Scholar 

  • 55.

    Cingolani, A. M., Noy-Meir, I. & Díaz, S. Grazing effects on rangeland diversity: A synthesis of contemporary models. Ecol. Appl. 15, 757–773 (2005).

    Article  Google Scholar 

  • 56.

    Harrison, S., Inouye, B. D. & Safford, H. D. Ecological heterogeneity in the effects of grazing and fire on grassland diversity. Conserv. Biol. 17, 837–845 (2003).

    Article  Google Scholar 

  • 57.

    Spasojevic, M. J. et al. Fire and grazing in a mesic tallgrass prairie: Impacts on plant species and functional traits. Ecology 91, 1651–1659 (2010).

    Article  PubMed  Google Scholar 

  • 58.

    Noy-Meir, I. Interactive effects of fire and grazing on structure and diversity of Mediterranean grasslands. J. Veg. Sci. 6, 701–710 (1995).

    Article  Google Scholar 

  • 59.

    Peterson, D. W. & Reich, P. B. Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone. Plant Ecol. 194, 5–16 (2008).

    Article  Google Scholar 

  • 60.

    Collins, S. L. Fire frequency and community heterogeneity in tallgrass prairie vegetation. Ecology 73, 2001–2006 (1992).

    Article  Google Scholar 

  • 61.

    Collins, S. L., Glenn, S. M. & Gibson, D. J. Experimental analysis of intermediate disturbance and initial floristic composition: Decoupling cause and effect. Ecology 76, 486–492 (1995).

    Article  Google Scholar 

  • 62.

    Belsky, A. J. Effects of grazing, competition, disturbance and fire on species composition and diversity in grassland communities. J. Veg. Sci. 3, 187–200 (1992).

    Article  Google Scholar 

  • 63.

    Malavasi, R., Battisti, C. & Carpaneto, G. M. Seasonal bird assemblages in a Mediterranean patchy wetland: Corroborating the intermediate disturbance hypothesis. Polish J. Ecol. 57, 171–179 (2009).

    Google Scholar 

  • 64.

    Millenbah, K. F., Winterstein, S. R., Campa, H. I. I. I., Furrow, L. T. & Minnis, R. B. Effects of Conservation Reserve Program field age on avian relative abundance, diversity, and productivity. Wilson Bull. 108, 760–770 (1996).

    Google Scholar 

  • 65.

    Shochat, E., Wolfe, D. H., Patten, M. A., Reinking, D. L. & Sherrod, S. K. Tallgrass prairie management and bird nest success along roadsides. Biol. Conserv. 121, 399–407 (2005).

    Article  Google Scholar 

  • 66.

    Sick, H. Ornitologia Brasileira (Nova Fronteira, Rio de Janeiro, 1997).

    Google Scholar 

  • 67.

    dos Reis, M. G., Fieker, C. Z. & Dias, M. M. The influence of fire on the assemblage structure of foraging birds in grasslands of the Serra da Canastra National Park, Brazil. An. Acad. Bras. Cienc. 88, 891–901 (2016).

    Article  PubMed  Google Scholar 

  • 68.

    Weier, A., Radford, I. J., Woolley, L.-A. & Lawes, M. J. Fire regime effects on annual grass seeds as food for threatened grass-finch. Fire Ecol. 14, 8 (2018).

    Article  Google Scholar 

  • 69.

    Fontana, C. S., Rovedder, C. E., Repenning, M. & Gonçalves, M. L. Estado atual do conhecimento e conservação da avifauna dos campos de cima da serra do sul do Brasil, Rio Grande do Sul e Santa Catarina. Rev. Bras. Ornitol. 16, 281–307 (2008).

    Google Scholar 

  • 70.

    Repenning, M. & Fontana, C. S. Breeding biology of the Tropeiro seedeater (Sporophila beltoni). Auk Ornithol. Adv. 133, 484–496 (2016).

    Google Scholar 

  • 71.

    Chiarani, E. & Fontana, C. S. Breeding biology of the Lesser grass-finch (Emberizoides ypiranganus) in southern Brazilian upland grasslands. Wilson J. Ornithol. 127, 441–456 (2015).

    Article  Google Scholar 

  • 72.

    Reinking, D. L. Fire regimes and avian responses in the central tallgrass prairie. Stud. Avian Biol. 30, 116–126 (2005).

    Google Scholar 

  • 73.

    Churchwell, R. T., Davis, C. A., Fuhlendorf, S. D. & Engle, D. M. Effects of patch-burn management on dickcissel nest success in a tallgrass prairie. J. Wildl. Manag. 72, 1596–1604 (2008).

    Google Scholar 

  • 74.

    Rohrbaugh, R. W., Reinking, D. L., Wolfe, D. H., Sherrod, S. K. & Jenkins, M. A. Effects of prescribed burning and grazing on nesting and reproductive success of three grassland passerine species in tallgrass prairie. Stud. Avian Biol. 19, 165–170 (1999).

    Google Scholar 

  • 75.

    Andrade, B. O., Bonilha, C. L., Ferreira, P. M. A., Boldrini, I. I. & Overbeck, G. E. Highland grasslands at the southern tip of the Atlantic forest biome: Management options and conservation challenges. Oecol. Aust. 20, 37–61 (2016).

    Article  Google Scholar 

  • 76.

    de Pillar, V. P. & Vélez, E. Extinção dos Campos Sulinos em unidades de conservação: um fenômeno natural ou um problema ético?. Nat. a Conserv. 8, 84–86 (2010).

    Article  Google Scholar 

  • 77.

    Overbeck, G. E. et al. Conservation in Brazil needs to include non-forest ecosystems. Divers. Distrib. 21, 1455–1460 (2015).

    Article  Google Scholar 

  • 78.

    Azpiroz, A. B. et al. Ecology and conservation of grassland birds in southeastern South America: a review. J. F.Ornithol. 83(3), 217–246 (2012).

    Article  Google Scholar 

  • 79.

    Andrade, B. O. et al. Classification of South Brazilian grasslands: Implications for conservation. Appl. Veg. Sci. 22, 168–184 (2019).

    Article  Google Scholar 

  • 80.

    Boldrini, I. I. & Eggers, L. Vegetação campestre do sul do Brasil: dinâmica de espécies à exclusão do gado. Acta Bot. Brasilica 10, 37–50 (1996).

    Article  Google Scholar 

  • 81.

    Bibby, C. J., Burgess, N. D. & Hill, D. A. Bird Census Techniques (Academic Press, Cambridge, 1992).

    Google Scholar 

  • 82.

    Lavorel, S., McIntyre, S., Landsberg, J. & Forbes, T. D. A. Plant functional classifications: From general groups to specific groups based on response to disturbance. Trends Ecol. Evol. 12, 474–478 (1997).

    CAS  Article  PubMed  Google Scholar 

  • 83.

    Lavorel, S., Rochette, C. & Lebreton, J.-D. Functional groups for response to disturbance in mediterranean old fields. Oikos 84, 480 (1999).

    Article  Google Scholar 

  • 84.

    Díaz, S., Acosta, A. & Cabido, M. Community structure in montane grasslands of central Argentina in relation to land use. J. Veg. Sci. 5, 483–488 (1994).

    Article  Google Scholar 

  • 85.

    Belton, H. Aves do Rio Grande do Sul: distribuição e biologia. Unisinos (1994).

  • 86.

    Fontana, C. S., Repenning, M., Rovedder, C. E. & Gonçalves, M. L. Biodiversidade dos campos de Cima da Serra. In (eds. Bond-Buckup, G., Buckup, L. & Dreier, C.) 118–135 (Libretos, 2010).

  • 87.

    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 027–046 (2010).

    Article  Google Scholar 

  • 88.

    Hebbali, A. olsrr: Tools for Building OLS Regression Models. R package version 0.5.3. https://CRAN.R-project.org/package=olsrr (2020). 

  • 89.

    Akinwande, M. O., Dikko, H. G. & Samson, A. Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 05, 754–767 (2015).

    Article  Google Scholar 

  • 90.

    Del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the Birds of the World Alive (Lynx Edicions, Barcelona, 2018).

    Google Scholar 

  • 91.

    Pillar, V. D., da Duarte, L. S., Sosinski, E. E. & Joner, F. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. J. Veg. Sci. 20, 334–348 (2009).

    Article  Google Scholar 

  • 92.

    Magurran, A. E. Measuring Biological Diversity (Wiley, New York, 2013).

    Google Scholar 

  • 93.

    Podani, J. Extending Gower’s general coefficient of similarity to ordinal characters. Taxon 48, 331–340 (1999).

    Article  Google Scholar 

  • 94.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).

  • 95.

    Zuur, A., Ieno, E., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects Models and Extensions in Ecology with R (Springer, New York, 2009).

    Google Scholar 

  • 96.

    Pinheiro, J., Bates, D., DebRoy, & S., Sarkar, D. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-149. https://CRAN.Rproject.org/package=nlme (2020).

  • 97.

    Zelený, D. Which results of the standard test for community-weighted mean approach are too optimistic?. J. Veg. Sci. 29, 953–966 (2018).

    Article  Google Scholar 

  • 98.

    Zeleny, D. Bias in Community-Weighted Mean Analysis Relating Species Attributes to Sample Attributes: Justification and Remedy. bioRxiv (Cold Spring Harbor Laboratory, 2016). https://doi.org/10.1101/046946

  • 99.

    Ter Braak, C. J. F. New robust weighted averaging- and model-based methods for assessing trait–environment relationships. Methods Ecol. Evol. 10, 1962–1971 (2019).

    Article  Google Scholar 

  • 100.

    Hawkins, B. A. et al. Structural bias in aggregated species-level variables driven by repeated species co-occurrences: A pervasive problem in community and assemblage data. J. Biogeogr. 44, 1199–1211 (2017).

    Article  Google Scholar 

  • 101.

    Mangiafico, S. Functions to support extension education program evaluation. (2020).

  • 102.

    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, Amsterdam, 2012).

    Google Scholar 

  • 103.

    Ter Braak, C. J. F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).

    Article  Google Scholar 

  • 104.

    IUCN 2020. The IUCN Red List of Threatened Species. 2020-2 https://www.iucnredlist.org. Accessed 10th Oct 2020

  • 105.

    Christensen, N. L. et al. Interpreting the Yellowstone fires of 1988. Bioscience 39, 678–685 (1989).

    Article  Google Scholar 

  • 106.

    Ramos-Neto, M. B. & Pivello, V. R. Lightning fires in a Brazilian Savanna national park: Rethinking management strategies. Environ. Manag. 26, 675–684 (2000).

    ADS  CAS  Article  Google Scholar 

  • 107.

    Dias, R. A. et al. Livestock disturbance in Brazilian grasslands influences avian species diversity via turnover. Biodivers. Conserv. 26, 2473–2490 (2017).

    Article  Google Scholar 

  • 108.

    Mazzoni, L. & Perillo, A. Range extension of Anthus nattereri Sclater, 1878 (Aves: Motacillidae) in Minas Gerais, southeastern Brazil. Check List 7, 589 (2011).

    Article  Google Scholar 

  • 109.

    Lombardi, V. T. et al. Registros notáveis de aves para o sul do estado de Minas Gerais, Brasil. Cotinga 34, 32–45 (2012).

    Google Scholar 

  • 110.

    Petry, M. V. & Krüger, L. Frequent use of burned grasslands by the vulnerable Saffron-Cowled Blackbird Xanthopsar flavus: Implications for the conservation of the species. J. Ornithol. 151, 599–605 (2010).

    Article  Google Scholar 

  • 111.

    Fraga, R. M., Casañas, H. & Pugnali, G. Natural history and conservation of the endangered saffron-cowled blackbird Xanthopsar flavus in Argentina. Bird Conserv. Int. 8, 255–267 (1998).

    Article  Google Scholar 

  • 112.

    Silva, J. F., Raventos, J. & Caswell, H. Fire and fire exclusion effects on the growth and survival of two savanna grasses. Acta Ecol. 6, 783–800 (1990).

    Google Scholar 

  • 113.

    Rovedder, C. E. & Fontana, C. S. Nest, eggs, and nest placement of the Brazilian endemic Black-bellied seedeater (Sporophila melanogaster). Wilson J. Ornithol. 124, 173–176 (2012).

    Article  Google Scholar 

  • 114.

    Franz, I. & Fontana, C. S. Breeding biology of the Tawny-bellied seedeater (Sporophila hypoxantha) in southern Brazilian upland grasslands. Wilson J. Ornithol. 125, 280–292 (2013).

    Article  Google Scholar 

  • 115.

    Dias, R. A., Bastazini, V. A. G. & Gianuca, A. T. Bird-habitat associations in coastal rangelands of southern Brazil. Iheringia. Série Zool. 104, 200–208 (2014).

    Article  Google Scholar 

  • 116.

    Terborgh, J. W. Toward a trophic theory of species diversity. Proc. Natl. Acad. Sci. U. S. A. 112, 11415–11422 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 117.

    Hunter, M. D. & Price, P. W. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73, 724–732 (1992).

    Google Scholar 

  • 118.

    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2020).


  • Source: Ecology - nature.com

    Power-free system harnesses evaporation to keep items cool

    Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed