in

The thermal response of soil microbial methanogenesis decreases in magnitude with changing temperature

  • 1.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  • 2.

    Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K. & Zhuang, Q. L. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Change Biol. 19, 1325–1346 (2013).

    ADS  Article  Google Scholar 

  • 4.

    Harriss, R. C., Gorham, E., Sebacher, D. I., Bartlett, K. B. & Flebbe, P. A. Methane flux from northern peatlands. Nature 315, 652–654 (1985).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Segers, R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41, 23–51 (1998).

    CAS  Article  Google Scholar 

  • 7.

    Inglett, K. S., Inglett, P. W., Reddy, K. R. & Osborne, T. Z. Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation. Biogeochemistry 108, 77–90 (2012).

    CAS  Article  Google Scholar 

  • 8.

    Dean, J. F. et al. Methane feedbacks to the global climate system in a warmer world. Rev. Geophys. 56, 207–250 (2018).

    ADS  Article  Google Scholar 

  • 9.

    Xu, X. et al. Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences 13, 3735–3755 (2016).

    ADS  CAS  Article  Google Scholar 

  • 10.

    McCalley, C. K. et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514, 478–481 (2014).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Wuebbles, D. J. & Hayhoe, K. Atmospheric methane and global change. Earth-Sci. Rev. 57, 177–210 (2002).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Smith, T. P. et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nat. Commun. 10, 5124–5124 (2019).

    ADS  Article  CAS  Google Scholar 

  • 13.

    Melillo, J. M. et al. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176 (2002).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. USA 113, 13797–13802 (2016).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).

    Article  Google Scholar 

  • 17.

    Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & Garcia-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).

    Article  Google Scholar 

  • 18.

    Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).

    Article  Google Scholar 

  • 19.

    Bradford, M. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. 4, 00333 (2013).

    Article  Google Scholar 

  • 20.

    Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Wei, H. et al. Thermal acclimation of organic matter decomposition in an artificial forest soil is related to shifts in microbial community structure. Soil Biol. Biochem. 71, 1–12 (2014).

    CAS  Article  Google Scholar 

  • 22.

    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Hochachka, P. W. & Somero, G. N. Biochemical Adaptation Mechanism and Process in Physiological Evolution (Oxford Univ. Press, New York, 2002).

  • 24.

    Angilletta Jr, M. J. & Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis. (Oxford Univ. Press, New York, 2009).

  • 25.

    Ren, J. et al. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China. Sci. Total Environ. 625, 782–791 (2018).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Cui, M. et al. Warmer temperature accelerates methane emissions from the Zoige wetland on the Tibetan Plateau without changing methanogenic community composition. Sci. Rep. 5, 11616 (2015).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Hartley, I. P., Hopkins, D. W., Garnett, M. H., Sommerkorn, M. & Wookey, P. A. Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol. Lett. 11, 1092–1100 (2008).

    Article  Google Scholar 

  • 28.

    Crowther, T. W. & Bradford, M. A. Thermal acclimation in widespread heterotrophic soil microbes. Ecol. Lett. 16, 469–477 (2013).

    Article  Google Scholar 

  • 29.

    Bradford, M. A., Watts, B. W. & Davies, C. A. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob. Change Biol. 16, 1576–1588 (2010).

    ADS  Article  Google Scholar 

  • 30.

    Luo, Y. Q., Wan, S. Q., Hui, D. F. & Wallace, L. L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413, 622–625 (2001).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. & Erasmi, S. Greenhouse gas emissions from soils—a review. Geochemistry 76, 327–352 (2016).

    CAS  Article  Google Scholar 

  • 32.

    Wagner, R., Zona, D., Oechel, W. & Lipson, D. Microbial community structure and soil pH correspond to methane production in Arctic Alaska soils. Environ. Microbiol. 19, 3398–3410 (2017).

    CAS  Article  Google Scholar 

  • 33.

    Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).

    ADS  Article  CAS  Google Scholar 

  • 34.

    Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003).

    CAS  Article  Google Scholar 

  • 35.

    Lou, J., Yang, L., Wang, H. Z., Wu, L. S. & Xu, J. M. Assessing soil bacterial community and dynamics by integrated high-throughput absolute abundance quantification. Peerj 6, e4514 (2018).

    Article  CAS  Google Scholar 

  • 36.

    Zhang, Z. J. et al. Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Sci. Rep. 7, 4837 (2017).

    ADS  Article  CAS  Google Scholar 

  • 37.

    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).

    Article  Google Scholar 

  • 38.

    Tilman, D., Reich, P. B. & Knops, J. M. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    ADS  CAS  Article  Google Scholar 

  • 39.

    Treseder, K. K. et al. Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry 109, 7–18 (2012).

    CAS  Article  Google Scholar 

  • 40.

    Singh, B. Soil Carbon Storage: Modulators, Mechanisms and Modeling. (Academic Press, 2018).

  • 41.

    Auffret, M. D. et al. The role of microbial community composition in controlling soil respiration responses to temperature. Plos ONE 11, e0165448 (2016).

    Article  CAS  Google Scholar 

  • 42.

    Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl Acad. Sci. USA 105, 11512–11519 (2008).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 417 (2012).

    Article  Google Scholar 

  • 44.

    Chen, H., Zou, J., Cui, J., Nie, M. & Fang, C. Wetland drying increases the temperature sensitivity of soil respiration. Soil Biol. Biochem. 120, 24–27 (2018).

    CAS  Article  Google Scholar 

  • 45.

    Blodau, C. Carbon cycling in peatlands – a review of processes and controls. Environ. Revi 10, 111–134 (2002).

    CAS  Article  Google Scholar 

  • 46.

    Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 15, 4399–4981 (2015).

    ADS  CAS  Article  Google Scholar 

  • 47.

    Conrad, R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org. Geochem. 36, 739–752 (2005).

    CAS  Article  Google Scholar 

  • 48.

    Brigham, B. A., Montero, A. D., O’Mullan, G. D. & Bird, J. A. Acetate additions stimulate CO2 and CH4 production from urban wetland soils. Soil Sci. Soc. Am. J. 82, 1147–1159 (2018).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Wang, Z., Delaune, R., Patrick, W. & Masscheleyn, P. Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci. Soc. Am. J. 57, 382–385 (1993).

    ADS  CAS  Article  Google Scholar 

  • 50.

    Hazel, J. R. & Prosser, C. L. Molecular mechanisms of temperature compensation in poikilotherms. Physiol. Rev. 54, 620–677 (1974).

    CAS  Article  Google Scholar 

  • 51.

    Walker, T. W. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Chan 8, 885–889 (2018).

    ADS  CAS  Article  Google Scholar 

  • 52.

    Morris, R. et al. Methyl coenzyme M reductase (mcrA) gene abundance correlates with activity measurements of methanogenic H2/CO2-enriched anaerobic biomass. Microb. Biotechnol. 7, 77–84 (2014).

    CAS  Article  Google Scholar 

  • 53.

    Steinberg, L. M. & Regan, J. M. mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl. Environ. Micro. 75, 4435–4442 (2009).

    CAS  Article  Google Scholar 

  • 54.

    Zeleke, J. et al. Methyl coenzyme M reductase A (mcrA) gene-based investigation of methanogens in the mudflat sediments of Yangtze River Estuary, China. Microb. Ecol. 66, 257–267 (2013).

    CAS  Article  Google Scholar 

  • 55.

    Nocker, A. & Camper, A. K. Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques. FEMS Microbiol. Lett. 291, 137–142 (2009).

    CAS  Article  Google Scholar 

  • 56.

    Salazar-Villegas, A., Blagodatskaya, E. & Dukes, J. S. Changes in the size of the active microbial pool explain short-term soil respiratory responses to temperature and moisture. Front. Microbiol. 7, 524 (2016).

    Article  Google Scholar 

  • 57.

    Strickland, M. S. & Rousk, J. Considering fungal: bacterial dominance in soils–methods, controls, and ecosystem implications. Soil Biol. Biochem 42, 1385–1395 (2010).

    CAS  Article  Google Scholar 

  • 58.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. J. P. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    Article  Google Scholar 

  • 59.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  Article  Google Scholar 

  • 60.

    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. J. T. Ij UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).

    Article  Google Scholar 

  • 61.

    Reich, P. B. et al. Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531, 633–636 (2016).

    ADS  CAS  Article  Google Scholar 

  • 62.

    Loveys, B. R. et al. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Glob. Change Biol. 9, 895–910 (2003).

    ADS  Article  Google Scholar 

  • 63.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    ADS  CAS  Article  Google Scholar 

  • 64.

    Fierer, N., Colman, B. P., Schimel, J. P. & Jackson, R. B. Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Glob. Biogeochem. Cy 20, GB3026 (2006).

    ADS  Article  CAS  Google Scholar 

  • 65.

    Fang, C. & Moncrieff, J. B. The dependence of soil CO2 efflux on temperature. Soil Biol. Biochem. 33, 155–165 (2001).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Power-free system harnesses evaporation to keep items cool

    Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed