in

The use of light spectrum blocking films to reduce populations of Drosophila suzukii Matsumura in fruit crops

  • 1.

    Asplen, M. K. et al. Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. J. Pest Sci. 88, 469–494 (2015).

    Google Scholar 

  • 2.

    Lee, J. C. et al. In focus: spotted wing drosophila, Drosophila suzukii, across perspectives. Pest Manag. Sci. 67, 1349–1351 (2011).

    CAS  PubMed  Google Scholar 

  • 3.

    Bolda, M. P., Goodhue, R. E. & Zalom, F. G. Spotted wing drosophila: potential economic impact of a newly established pest. Agric. Resour. Econ. Updat. 13, 5–8 (2010).

    Google Scholar 

  • 4.

    Haviland, D. R. & Beers, E. H. Chemical control programs for Drosophila suzukii that comply with international limitations on pesticide residues for exported sweet cherries. J. Integr. Pest Manag. 3, F1–F6 (2012).

    Google Scholar 

  • 5.

    Van Timmeren, S., Mota-Sanchez, D., Wise, J. C. & Isaacs, R. Baseline susceptibility of spotted wing drosophila (Drosophila suzukii) to four key insecticide classes. Pest Manag. Sci. 74, 78–87 (2018).

    PubMed  Google Scholar 

  • 6.

    Gress, B. E. & Zalom, F. G. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest Manag. Sci. 75, 1270–1276 (2019).

    CAS  PubMed  Google Scholar 

  • 7.

    Bale, J., Van Lenteren, J. & Bigler, F. Biological control and sustainable food production. Philos. Trans. R. Soc. B: Biol. Sci. 363, 761–776 (2008).

  • 8.

    Iglesias, L. E., Nyoike, T. W. & Liburd, O. E. Effect of trap design, bait type, and age on captures of Drosophila suzukii (Diptera: Drosophilidae) in berry crops. J. Econ. Entomol. 107, 1508–1518 (2014).

    PubMed  Google Scholar 

  • 9.

    Tonina, L. et al. Comparison of attractants for monitoring Drosophila suzukii in sweet cherry orchards in Italy. J. Appl. Entomol. 142, 18–25 (2018).

    CAS  Google Scholar 

  • 10.

    Rajapakse, N. C. & Kelly, J. W. Regulation of chrysanthemum growth by spectral filters. J. Am. Soc. for Hortic. Sci. 117, 481–485 (1992).

    Google Scholar 

  • 11.

    Van Haeringen, C. et al. The development of solid spectral filters for the regulation of plant growth. Photochem. Photobiol. 67, 407–413 (1998).

    Google Scholar 

  • 12.

    West, J. et al. Spectral filters for the control of Botrytis cinerea. Ann. Appl. Biol. 136, 115–120 (2000).

    ADS  Google Scholar 

  • 13.

    Antignus, Y., Mor, N., Ben Joseph, R., Lapidot, M. & Cohen, S. Ultraviolet-absorbing plastic sheets protect crops from insect pests and from virus diseases vectored by insects. Environ. Entomol. 25, 919–924 (1996).

    Google Scholar 

  • 14.

    Fennell, J. T., Fountain, M. T. & Paul, N. D. Direct effects of protective cladding material on insect pests in crops. Crop. Prot. (2019).

  • 15.

    Doukas, D. & Payne, C. The use of ultraviolet-blocking films in insect pest management in the UK; effects on naturally occurring arthropod pest and natural enemy populations in a protected cucumber crop. Ann. Appl. Biol. 151, 221–231 (2007).

    Google Scholar 

  • 16.

    Solaiman, A. H. M., Nishizawa, T., Arefin, S. A., Sarkar, M. D. & Shahjahan, M. Effect of partially UV-blocking films on the growth, yield, pigmentation, and insect control of red amaranth (Amaranthus tricolor). Curr. J. Appl. Sci. Technol. 1–11 (2016).

  • 17.

    Hardie, R. C. Functional organization of the fly retina. In Progress in Sensory Physiology, 1–79 (Springer, New York, 1985).

  • 18.

    Schnaitmann, C., Pagni, M. & Reiff, D. F. Color vision in insects: insights from drosophila. J. Comp. Physiol. A 206, 1–16 (2020).

    Google Scholar 

  • 19.

    Schnaitmann, C., Garbers, C., Wachtler, T. & Tanimoto, H. Color discrimination with broadband photoreceptors. Curr. Biol. 23, 2375–2382 (2013).

    CAS  PubMed  Google Scholar 

  • 20.

    Wardill, T. J. et al. Multiple spectral inputs improve motion discrimination in the drosophila visual system. Science 336, 925–931 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Schümperli, R. A. Evidence for colour vision in Drosophila melanogaster through spontaneous phototactic choice behaviour. J. Comp. Physiol. A 86, 77–94 (1973).

    Google Scholar 

  • 22.

    Bernard, G. D. & Stavenga, D. G. Spectral sensitivities of retinular cells measured in intact, living flies by an optical method. J. Comp. Physiol. 134, 95–107 (1979).

    Google Scholar 

  • 23.

    Hardie, R. C. Polarization vision: Drosophila enters the arena. Curr. Biol. 22, R12–R14 (2012).

    CAS  PubMed  Google Scholar 

  • 24.

    Zhu, E. Y., Guntur, A. R., He, R., Stern, U. & Yang, C.-H. Egg-laying demand induces aversion of UV light in drosophila females. Curr. Biol. 24, 2797–2804 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Kane, E. A. et al. Sensorimotor structure of drosophila larva phototaxis. Proc. Natl. Acad. Sci. 110, E3868–E3877 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 26.

    Kelber, A. & Henze, M. J. Colour vision: parallel pathways intersect in drosophila. Curr. Biol. 23, R1043–R1045 (2013).

    CAS  PubMed  Google Scholar 

  • 27.

    Rice, K. B., Short, B. D., Jones, S. K. & Leskey, T. C. Behavioral responses of Drosophila suzukii (Diptera: Drosophilidae) to visual stimuli under laboratory, semifield, and field conditions. Environ. Entomol. 45, 1480–1488 (2016).

    PubMed  Google Scholar 

  • 28.

    Kirkpatrick, D., McGhee, P., Hermann, S., Gut, L. & Miller, J. Alightment of spotted wing drosophila (Diptera: Drosophilidae) on odorless disks varying in color. Environ. Entomol. 45, 185–191 (2016).

    CAS  PubMed  Google Scholar 

  • 29.

    Little, C. M., Chapman, T. W. & Hillier, N. K. Effect of color and contrast of highbush blueberries to host-finding behavior by drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol. 47, 1242–1251 (2018).

    CAS  PubMed  Google Scholar 

  • 30.

    Little, C. M., Rizzato, A. R., Charbonneau, L., Chapman, T. & Hillier, N. K. Color preference of the spotted wing drosophila. Drosophila suzukii. Sci. Rep. 9, 1–12 (2019).

    Google Scholar 

  • 31.

    Yamaguchi, S., Wolf, R., Desplan, C. & Heisenberg, M. Motion vision is independent of color in drosophila. Proc. Natl. Acad. Sci. 105, 4910–4915 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 32.

    Paulk, A., Millard, S. S. & van Swinderen, B. Vision in drosophila: seeing the world through a model’s eyes. Annu. Rev. Entomol. 58, 313–332 (2013).

    CAS  PubMed  Google Scholar 

  • 33.

    Humberg, T.-H. & Sprecher, S. G. Age-and wavelength-dependency of drosophila larval phototaxis and behavioral responses to natural lighting conditions. Front. Behav. Neurosci. 11, 66 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Cronin, T. W. & Bok, M. J. Photoreception and vision in the ultraviolet. J. Exp. Biol. 219, 2790–2801 (2016).

    PubMed  Google Scholar 

  • 35.

    Stone, T., Mangan, M., Ardin, P., Webb, B. et al. Sky segmentation with ultraviolet images can be used for navigation. In Robotics: Science and Systems (2014).

  • 36.

    Kirk, R., Cielniak, G. & Mangan, M. L* a* b* fruits: A rapid and robust outdoor fruit detection system combining bio-inspired features with one-stage deep learning networks. Sensors 20, 275 (2020).

    Google Scholar 

  • 37.

    Clymans, R. et al. Olfactory preference of Drosophila suzukii shifts between fruit and fermentation cues over the season: effects of physiological status. Insects 10, 200 (2019).

    PubMed Central  Google Scholar 

  • 38.

    Keesey, I. W., Knaden, M. & Hansson, B. S. Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. J. Chem. Ecol. 41, 121–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Kumar, P. & Poehling, H.-M. UV-blocking plastic films and nets influence vectors and virus transmission on greenhouse tomatoes in the humid tropics. Environ. Entomol. 35, 1069–1082 (2006).

    Google Scholar 

  • 40.

    Legarrea, S., Karnieli, A., Fereres, A. & Weintraub, P. G. Comparison of UV-absorbing nets in pepper crops: Spectral properties, effects on plants and pest control. Photochem. Photobiol. 86, 324–330 (2010).

    CAS  PubMed  Google Scholar 

  • 41.

    Costa, H. S. & Robb, K. L. Effects of ultraviolet-absorbing greenhouse plastic films on flight behavior of Bemisia argentifolii (homoptera: Aleyrodidae) and Frankliniella occidentalis (Thysanoptera: Thripidae). J. Econ. Entomol. 92, 557–562 (1999).

    Google Scholar 

  • 42.

    Chyzik, R., Dobrinin, S. & Antignus, Y. Effect of a UV-deficient environment on the biology and flight activity of Myzus persicae and its hymenopterous parasite Aphidius matricariae. Phytoparasitica 31, 467–477 (2003).

    Google Scholar 

  • 43.

    Costa, H., Robb, K. & Wilen, C. Field trials measuring the effects of ultraviolet-absorbing greenhouse plastic films on insect populations. J. Econ. Entomol. 95, 113–120 (2002).

    CAS  PubMed  Google Scholar 

  • 44.

    Dáder, B., Gwynn-Jones, D., Moreno, A., Winters, A. & Fereres, A. Impact of uv-a radiation on the performance of aphids and whiteflies and on the leaf chemistry of their host plants. J. Photochem. Photobiol. B: Biol. 138, 307–316 (2014).

    Google Scholar 

  • 45.

    Díaz, B. M., Biurrún, R., Moreno, A., Nebreda, M. & Fereres, A. Impact of ultraviolet-blocking plastic films on insect vectors of virus diseases infesting crisp lettuce. HortScience 41, 711–716 (2006).

    Google Scholar 

  • 46.

    Kuhlmann, F. & Müller, C. Development-dependent effects of UV radiation exposure on broccoli plants and interactions with herbivorous insects. Environ. Exp. Bot. 66, 61–68 (2009).

    CAS  Google Scholar 

  • 47.

    Paul, N. D. et al. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms. Physiol. Plantarum 145, 565–581 (2012).

    CAS  Google Scholar 

  • 48.

    Sal, J. et al. Influence of UV-absorbing nets in the population of Macrosiphum euphorbiae Thomas (Homoptera: Aphididae) and the parasitoid Aphidius ervi (Haliday) (Hymenoptera: Aphidiidae) in lettuce crops. In Proceedings of Third International Symposium Biological Control Arthropods, Christ Church, New Zealand, 329–337 (2009).

  • 49.

    Legarrea, S., Weintraub, P., Plaza, M., Viñuela, E. & Fereres, A. Dispersal of aphids, whiteflies and their natural enemies under photoselective nets. Biocontrol 57, 523–532 (2012).

    Google Scholar 

  • 50.

    Legarrea, S. et al. Dynamics of nonpersistent aphid-borne viruses in lettuce crops covered with UV-absorbing nets. Virus Res. 165, 1–8 (2012).

    CAS  PubMed  Google Scholar 

  • 51.

    Legarrea, S. et al. Diminished uv radiation reduces the spread and population density of Macrosiphum euphorbiae (Thomas) [Hemiptera: Aphididae] in lettuce crops. Hortic. Sci. 39, 74–80 (2012).

    Google Scholar 

  • 52.

    Dáder, B., Moreno, A., Gwynn-Jones, D., Winters, A. & Fereres, A. Aphid orientation and performance in glasshouses under different UV-a/UV-b radiation regimes. Entomol. Exp. et Appl. 163, 344–353 (2017).

    Google Scholar 

  • 53.

    El-Aal, H. A. A., Rizk, A. M. & Mousa, I. E. Evaluation of new greenhouse covers with modified light regime to control cotton aphid and cucumber (Cucumis sativus L.) productivity. Crop. Prot. 107, 64–70 (2018).

    Google Scholar 

  • 54.

    Kigathi, R. & Poehling, H.-M. UV-absorbing films and nets affect the dispersal of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). J. Appl. Entomol. 136, 761–771 (2012).

    Google Scholar 

  • 55.

    Bueno, E. et al. Response of wild spotted wing drosophila (Drosophila suzukii) to microbial volatiles. J. Chem. Ecol. 1–11 (2019).

  • 56.

    Renkema, J. M., Buitenhuis, R. & Hallett, R. H. Reduced Drosophila suzukii infestation in berries using deterrent compounds and laminate polymer flakes. Insects 8, 117 (2017).

    PubMed Central  Google Scholar 

  • 57.

    Erland, L. A., Rheault, M. R. & Mahmoud, S. S. Insecticidal and oviposition deterrent effects of essential oils and their constituents against the invasive pest Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). Crop. Prot. 78, 20–26 (2015).

    CAS  Google Scholar 

  • 58.

    Wallingford, A. K., Cha, D. H. & Loeb, G. M. Evaluating a push–pull strategy for management of Drosophila suzukii Matsumura in red raspberry. Pest Manag. Sci. 74, 120–125 (2018).

    CAS  PubMed  Google Scholar 

  • 59.

    Smirle, M. J., Zurowski, C. L., Ayyanath, M.-M., Scott, I. M. & MacKenzie, K. E. Laboratory studies of insecticide efficacy and resistance in Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) populations from British Columbia, Canada. Pest Manag. Sci. 73, 130–137 (2017).

    CAS  PubMed  Google Scholar 

  • 60.

    Shaw, B., Brain, P., Wijnen, H. & Fountain, M. T. Implications of sub-lethal rates of insecticides and daily time of application on Drosophila suzukii lifecycle. Crop. Prot. 121, 182–194 (2019).

    CAS  Google Scholar 

  • 61.

    van der Blom, J. Applied entomology in spanish greenhouse horticulture. Proc. Neth. Entomol. Soc. Meet 21, 9–17 (2010).

    Google Scholar 

  • 62.

    Fingerman, M. & Brown, F. A. A “purkinje shift” in insect vision. Science 116, 171–172 (1952).

    ADS  CAS  PubMed  Google Scholar 

  • 63.

    Meier, U. Phenological growth stages. In Phenology: An Integrative Environmental Science, 269–283 (Springer, New York, 2003).

  • 64.

    Doukas, D. & Payne, C. C. Greenhouse whitefly (Homoptera: Aleyrodidae) dispersal under different UV-light environments. J. Econ. Entomol. 100, 389–397 (2014).

    Google Scholar 

  • 65.

    Palanca, L., Gaskett, A. C., Günther, C. S., Newcomb, R. D. & Goddard, M. R. Quantifying variation in the ability of yeasts to attract Drosophila melanogaster. PLoS ONE 8 (2013).


  • Source: Ecology - nature.com

    Quorum sensing controls persistence, resuscitation, and virulence of Legionella subpopulations in biofilms

    Evaluating battery revenues for offshore wind farms using advanced modeling