in

Toxicity of the herbicides diuron, propazine, tebuthiuron, and haloxyfop to the diatom Chaetoceros muelleri

  • 1.

    Carbery, K., Owen, R., Frickers, T., Otero, E. & Readman, J. Contamination of Caribbean coastal waters by the antifouling herbicide Irgarol 1051. Mar. Pollut. Bull. 52, 635–644. https://doi.org/10.1016/j.marpolbul.2005.10.013 (2006).

    CAS  Article  Google Scholar 

  • 2.

    Hernández-Romero, A. H., Tovilla-Hernández, C., Malo, E. A. & Bello-Mendoza, R. Water quality and presence of pesticides in a tropical coastal wetland in southern Mexico. Mar. Pollut. Bull. 48, 1130–1141. https://doi.org/10.1016/j.marpolbul.2004.01.003 (2004).

    CAS  Article  Google Scholar 

  • 3.

    Castillo, L. E., de la Cruz, E. & Ruepert, C. Ecotoxicology and pesticides in tropical aquatic ecosystems of Central America. Environ. Toxicol. Chem. 16, 41–51. https://doi.org/10.1002/etc.5620160104 (1997).

    CAS  Article  Google Scholar 

  • 4.

    Basheer, C., Obbard, J. P. & Lee, H. K. Persistent organic pollutants in Singapore’s coastal marine environment: part I, seawater. Water Air Soil Pollut. 149, 295–313. https://doi.org/10.1023/A:1025689600993 (2003).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Ali, H. R. et al. Contamination of diuron in coastal waters around Malaysian Peninsular. Mar. Pollut. Bull. 85, 287–291. https://doi.org/10.1016/j.marpolbul.2014.05.049 (2014).

    CAS  Article  Google Scholar 

  • 6.

    Okamura, H., Aoyama, I., Ono, Y. & Nishida, T. Antifouling herbicides in the coastal waters of western Japan. Mar. Pollut. Bull. 47, 59–67. https://doi.org/10.1016/S0025-326X(02)00418-6 (2003).

    CAS  Article  Google Scholar 

  • 7.

    Roche, H., Salvat, B. & Ramade, F. Assessment of the pesticides pollution of coral reefs communities from French Polynesia. Rev. Ecol. https://hdl.handle.net/2042/55860 (2011).

  • 8.

    Sarkar, S. K. et al. Occurrence, distribution and possible sources of organochlorine pesticide residues in tropical coastal environment of India: an overview. Environ. Int. 34, 1062–1071. https://doi.org/10.1016/j.envint.2008.02.010 (2008).

    CAS  Article  Google Scholar 

  • 9.

    Devlin, M. M. et al. Advancing our understanding of the source, management, transport and impacts of pesticides on the Great Barrier Reef 2011–2015. Report for the Queensland Department of Environment and Heritage Protection. Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication, James Cook University, Cairns, Australia (2015).

  • 10.

    GBR. Great Barrier Reef Marine Park Authority 2019, Great Barrier Reef Outlook Report 2019, GBRMPA, Townsville. https://www.gbrmpa.gov.au/our-work/outlook-report-2019 (2019).

  • 11.

    Brodie, J. et al. Terrestrial pollutant runoff to the Great Barrier Reef: an update of issues, priorities and management responses. Mar. Pollut. Bull. 65, 81–100. https://doi.org/10.1016/j.marpolbul.2011.12.012 (2012).

    CAS  Article  Google Scholar 

  • 12.

    Lewis, S. E. et al. Herbicides: a new threat to the Great Barrier Reef. Environ. Pollut. 157, 2470–2484. https://doi.org/10.1016/j.envpol.2009.03.006 (2009).

    CAS  Article  Google Scholar 

  • 13.

    RWQIP. Reef 2050 Water Quality Improvement Plan 2017–2022. Australian and Queensland Government. https://www.reefplan.qld.gov.au/__data/assets/pdf_file/0017/46115/reef-2050-water-quality-improvement-plan-2017-22.pdf (2018).

  • 14.

    Shaw, M. et al. Monitoring pesticides in the Great Barrier Reef. Mar. Pollut. Bull. 60, 113–122. https://doi.org/10.1016/j.marpolbul.2009.08.026 (2010).

    CAS  Article  Google Scholar 

  • 15.

    Grant, S. et al. Marine Monitoring Program: Annual report for inshore pesticide monitoring 2015–2016 (Report for the Great Barrier Reef Marine Park Authority, Great Barrier Reef Marine Park Authority, Townsville, Australia, 2017).

    Google Scholar 

  • 16.

    O’Brien, D. et al. Spatial and temporal variability in pesticide exposure downstream of a heavily irrigated cropping area: application of different monitoring techniques. J. Agric. Food Chem. 64, 3975–3989. https://doi.org/10.1021/acs.jafc.5b04710 (2016).

    CAS  Article  Google Scholar 

  • 17.

    Radcliffe, J. Pesticide use in Australia. A review undertaken by the Australian Academy of Technological Sciences, Victoria, Australia. https://www.atse.org.au/ (2002).

  • 18.

    Oettmeier, W. Herbicides of photosystems II. in Structure, Function and Molecular Biology (Barber, J., ed) (Elsevier, Amsterdam, 349–408). https://doi.org/10.1016/B978-0-444-89440-3.50018-7 (1992).

  • 19.

    Lewis, S. E. et al. Using monitoring data to model herbicides exported to the Great Barrier Reef, Australia. in The 19th International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand. MODSIM2011, 2051–2056 (2011).

  • 20.

    Kennedy, K. et al. The influence of a season of extreme wet weather events on exposure of the World Heritage Area Great Barrier Reef to pesticides. Mar. Pollut. Bull. 64, 1495–1507. https://doi.org/10.1016/j.marpolbul.2012.05.014 (2012).

    CAS  Article  Google Scholar 

  • 21.

    Kennedy, K. et al. Long term monitoring of photosystem II herbicides: correlation with remotely sensed freshwater extent to monitor changes in the quality of water entering the Great Barrier Reef, Australia. Mar. Pollut. Bull. 65, 292–305. https://doi.org/10.1016/j.marpolbul.2011.10.029 (2012).

    CAS  Article  Google Scholar 

  • 22.

    Mercurio, P., Mueller, J. F., Eaglesham, G., Flores, F. & Negri, A. P. Herbicide persistence in seawater simulation experiments. PLoS ONE 10, e0136391. https://doi.org/10.1371/journal.pone.0136391 (2015).

    CAS  Article  Google Scholar 

  • 23.

    Mercurio, P. et al. Degradation of herbicides in the tropical marine environment: influence of light and sediment. PLoS ONE 11, e0165890. https://doi.org/10.1371/journal.pone.0165890 (2016).

    CAS  Article  Google Scholar 

  • 24.

    Gallen, C. et al. Marine Monitoring Program: Annual report for inshore pesticide monitoring 2017–18. Report for the Great Barrier Reef Marine Park Authority, Great Barrier Reef Marine Park Authority, Townsville, Australia. https://elibrary.gbrmpa.gov.au/jspui/handle/11017/3489 (2019).

  • 25.

    Davis, A., Lewis, S., Brodie, J. & Benson, A. The potential benefits of herbicide regulation: a cautionary note for the Great Barrier Reef catchment area. Sci. Total Environ. 490, 81–92. https://doi.org/10.1016/j.scitotenv.2014.04.005 (2014).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Thomas, M. C., Flores, F., Kaserzon, S., Fisher, R. & Negri, A. P. Toxicity of ten herbicides to the tropical marine microalgae Rhodomonas salina. Sci. Rep. 10, 7612. https://doi.org/10.1038/s41598-020-64116-y (2020).

    ADS  CAS  Article  Google Scholar 

  • 27.

    ANZG. Revised Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, Australia. https://www.waterquality.gov.au/anz-guidelines/guideline-values/default/water-quality-toxicants/toxicants (2018).

  • 28.

    Warne, M. St. J. et al. Revised method for deriving Australian and New Zealand water quality guideline values for toxicants: update of 2015 version. Prepared for the revision of the Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra, Australia. 48 pp, https://www.waterquality.gov.au/anz-guidelines/guideline-values/derive/warne-method-derive. https://doi.org/10.13140/RG.2.2.36577.35686 (2018).

  • 29.

    Warne, M. St. J., Smith, R. & Turner, R. Analysis of pesticide mixtures discharged to the lagoon of the Great Barrier Reef, Australia. Environ. Pollut. 265, 114088. https://doi.org/10.1016/j.envpol.2020.114088 (2020).

    CAS  Article  Google Scholar 

  • 30.

    Magnusson, M., Heimann, K., Quayle, P. & Negri, A. P. Additive toxicity of herbicide mixtures and comparative sensitivity of tropical benthic microalgae. Mar. Pollut. Bull. 60, 1978–1987. https://doi.org/10.1016/j.marpolbul.2010.07.031 (2010).

    CAS  Article  Google Scholar 

  • 31.

    Faust, M. et al. Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquat. Toxicol. 56, 13–32. https://doi.org/10.1016/S0166-445X(01)00187-4 (2001).

    CAS  Article  Google Scholar 

  • 32.

    Wilkinson, A. D., Collier, C. J., Flores, F. & Negri, A. P. Acute and additive toxicity of ten photosystem-II herbicides to seagrass. Sci. Rep. 5, 17443. https://doi.org/10.1038/srep17443 (2015).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Traas, T. P. et al. The potentially affected fraction as a measure of ecological risk. in Species sensitivity distributions in ecotoxicology (L. Posthuma, & G. W. Suter, Eds.) (pp. 315–344). https://doi.org/10.1201/9781420032314-20 (2002).

  • 34.

    Negri, A. P. et al. Adjusting tropical marine water quality guideline values for elevated ocean temperatures. Environ. Sci. Technol. 54, 1102–1110. https://doi.org/10.1021/acs.est.9b05961 (2019).

    ADS  CAS  Article  Google Scholar 

  • 35.

    King, O., Smith, R., Mann, R. & Warne, M. St. J. Proposed aquatic ecosystem protection guideline values for pesticides commonly used in the Great Barrier Reef catchment area: Part 1 (amended): 2,4-D, Ametryn, Diuron, Glyphosate, Hexazinone, Imazapic, Imidacloprid, Isoxaflutole, Metolachlor, Metribuzin, Metsulfuron-methyl, Simazine, Tebuthiuron. Department of Environment and Science, Brisbane, Australia. https://www.publications.qld.gov.au/dataset/proposed-guideline-values-27-pesticides-used-in-the-gbr-catchment (2017).

  • 36.

    King, O., Smith, R., Warne, M. St. J. & Mann, R. Proposed aquatic ecosystem protection guideline values for pesticides commonly used in the Great Barrier Reef catchment area: Part 2: Bromacil, Chlorothalonil, Fipronil, Fluometuron, Fluroxypyr, Haloxyfop, MCPA, Pendimethalin, Prometryn, Propazine, Propiconazole, Terbutryn, Triclopyr and Terbuthylazine. Department of Science, Information Technology and Innovation, Brisbane, Australia. https://www.publications.qld.gov.au/dataset/proposed-guideline-values-27-pesticides-used-in-the-gbr-catchment (2017).

  • 37.

    Fleeger, J. W., Carman, K. R. & Nisbet, R. M. Indirect effects of contaminants in aquatic ecosystems. Sci. Total Environ. 317, 207–233. https://doi.org/10.1016/S0048-9697(03)00141-4 (2003).

    ADS  CAS  Article  Google Scholar 

  • 38.

    Ralph, P. J. & Gademann, R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat. Bot. 82, 222–237. https://doi.org/10.1016/j.aquabot.2005.02.006 (2005).

    CAS  Article  Google Scholar 

  • 39.

    Schreiber, U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. in Chlorophyll a fluorescence (Springer, Dordrecht, 2004) 279–319.

  • 40.

    Magnusson, M., Heimann, K. & Negri, A. P. Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae. Mar. Pollut. Bull. 56, 1545–1552. https://doi.org/10.1016/j.marpolbul.2008.05.023 (2008).

    CAS  Article  Google Scholar 

  • 41.

    Sjollema, S. B. et al. Hazard and risk of herbicides for marine microalgae. Environ. Pollut. 187, 106–111. https://doi.org/10.1016/j.envpol.2013.12.019 (2014).

    CAS  Article  Google Scholar 

  • 42.

    Muller, R. et al. Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay. Sci. Total Environ. 401, 51–59. https://doi.org/10.1016/j.scitotenv.2008.02.062 (2008).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Bengston-Nash, S. M., Quayle, P. A., Schreiber, U. & Muller, J. F. The selection of a model microalgal species as biomaterial for a novel aquatic phytotoxicity assay. Aquat. Toxicol. 72, 315–326. https://doi.org/10.1016/j.aquatox.2005.02.004 (2005).

    CAS  Article  Google Scholar 

  • 44.

    Duggleby, R. G., McCourt, J. A. & Guddat, L. W. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol. Biochem. 46, 309–324. https://doi.org/10.1016/j.plaphy.2007.12.004 (2008).

    CAS  Article  Google Scholar 

  • 45.

    Grossmann, K. Auxin herbicides: current status of mechanism and mode of action. Pest Manage. Sci. 66, 113–120. https://doi.org/10.1002/ps.1860 (2010).

    CAS  Article  Google Scholar 

  • 46.

    OECD. Organisation for Economic Cooperation and Development (OECD) guidelines for the testing of chemicals: freshwater alga and cyanobacteria, growth inhibition test. Test No. 201, https://search.oecd.org/env/test-no-201-alga-growth-inhibition-test-9789264069923-en.htm (2011).

  • 47.

    Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242 (2016).

    CAS  Article  Google Scholar 

  • 48.

    Rutherford, A. W. & Krieger-Liszkay, A. Herbicide-induced oxidative stress in photosystem II. Trends Biochem. Sci. 26, 648–653. https://doi.org/10.1016/S0968-0004(01)01953-3 (2001).

    CAS  Article  Google Scholar 

  • 49.

    Chen, S., Yin, C., Strasser, R. J., Yang, C. & Qiang, S. Reactive oxygen species from chloroplasts contribute to 3-acetyl-5-isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana. Plant Physiol. Biochem. 52, 38–51. https://doi.org/10.1016/j.plaphy.2011.11.004 (2012).

    CAS  Article  Google Scholar 

  • 50.

    Chesworth, J., Donkin, M. & Brown, M. The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L.). Aquat. Toxicol. 66, 293–305. https://doi.org/10.1016/j.aquatox.2003.10.002 (2004).

    CAS  Article  Google Scholar 

  • 51.

    Jones, R. J. & Kerswell, A. P. Phytotoxicity of photosystem II (PSII) herbicides to coral. Mar. Ecol. Prog. Ser. 261, 149–159. https://doi.org/10.3354/meps261149 (2003).

    ADS  CAS  Article  Google Scholar 

  • 52.

    van Dam, J. W., Negri, A. P., Mueller, J. F. & Uthicke, S. Symbiont-specific responses in foraminifera to the herbicide diuron. Mar. Pollut. Bull. 65, 373–383. https://doi.org/10.1016/j.marpolbul.2011.08.008 (2012).

    CAS  Article  Google Scholar 

  • 53.

    Negri, A. P., Flores, F., Röthig, T. & Uthicke, S. Herbicides increase the vulnerability of corals to rising sea surface temperature. Limnol. Oceanogr. 56, 471–485. https://doi.org/10.4319/lo.2011.56.2.0471 (2011).

    ADS  CAS  Article  Google Scholar 

  • 54.

    USEPA. ECOTOX User Guide: ECOTOXicology Database System. Version 5.0. United States Environmental Protection Agency. https://cfpub.epa.gov/ecotox/ (2019).

  • 55.

    Bao, V. W., Leung, K. M., Qiu, J.-W. & Lam, M. H. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar. Pollut. Bull. 62, 1147–1151. https://doi.org/10.1016/j.marpolbul.2011.02.041 (2011).

    CAS  Article  Google Scholar 

  • 56.

    Gatidou, G., Thomaidis, N. S. & Zhou, J. L. Fate of Irgarol 1051, diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints. Environ. Int. 33, 70–77. https://doi.org/10.1016/j.envint.2006.07.002 (2007).

    CAS  Article  Google Scholar 

  • 57.

    Jung, S. et al. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae. Mar. Pollut. Bull. 124, 811–818. https://doi.org/10.1016/j.marpolbul.2016.11.047 (2017).

    CAS  Article  Google Scholar 

  • 58.

    Koutsaftis, A. & Aoyama, I. The interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae Chaetoceros gracilis. Environ. Toxicol. Int. J. 21, 432–439. https://doi.org/10.1002/tox.20202 (2006).

    ADS  CAS  Article  Google Scholar 

  • 59.

    Booij, P. et al. Identification of photosynthesis inhibitors of pelagic marine algae using 96-well plate microfractionation for enhanced throughput in effect-directed analysis. Environ. Sci. Technol. 48, 8003–8011. https://doi.org/10.1021/es405428t (2014).

    ADS  CAS  Article  Google Scholar 

  • 60.

    DeLorenzo, M. E., Danese, L. E. & Baird, T. D. Influence of increasing temperature and salinity on herbicide toxicity in estuarine phytoplankton. Environ. Toxicol. 28, 359–371. https://doi.org/10.1002/tox.20726 (2013).

    ADS  CAS  Article  Google Scholar 

  • 61.

    Devilla, R. A. et al. Impact of antifouling booster biocides on single microalgal species and on a natural marine phytoplankton community. Mar. Ecol. Prog. Ser. 286, 1–12. https://doi.org/10.3354/MEPS286001 (2005).

    ADS  CAS  Article  Google Scholar 

  • 62.

    Mercurio, P. et al. Contribution of transformation products towards the total herbicide toxicity to tropical marine organisms. Sci. Rep. 8, 4808. https://doi.org/10.1038/s41598-018-23153-4 (2018).

    ADS  CAS  Article  Google Scholar 

  • 63.

    Jones, R. The ecotoxicological effects of Photosystem II herbicides on corals. Mar. Pollut. Bull. 51, 495–506. https://doi.org/10.1016/j.marpolbul.2005.06.027 (2005).

    CAS  Article  Google Scholar 

  • 64.

    Guasch, H. & Sabater, S. Light history influences the sensitivity to atrazine in periphytic algae. J. Phycol. 34, 233–241. https://doi.org/10.1046/j.1529-8817.1998.340233.x (1998).

    CAS  Article  Google Scholar 

  • 65.

    Millie, D. F., Hersh, C. M. & Dionigi, C. P. Simazine-induced inhibition in photoacclimated populations of Anabaena circinalis (Cyanophyta). J. Phycol. 28, 19–26. https://doi.org/10.1111/j.0022-3646.1992.00019.x (1992).

    CAS  Article  Google Scholar 

  • 66.

    Bérard, A. et al. Comparison of the ecotoxicological impact of the triazines Irgarol 1051 and atrazine on microalgal cultures and natural microalgal communities in Lake Geneva. Chemosphere 53, 935–944. https://doi.org/10.1016/S0045-6535(03)00674-X (2003).

    ADS  CAS  Article  Google Scholar 

  • 67.

    Descolas-Gros, C. & Oriol, L. Variations in carboxylase activity in marine phytoplankton cultures. ß-carboxylation in carbon flux studies. Mar. Ecol. Prog. Ser. 85, 163–169 (1992).

    ADS  CAS  Article  Google Scholar 

  • 68.

    Tang, J., Hoagland, K. D. & Siegfried, B. D. Uptake and bioconcentration of atrazine by selected freshwater algae. Environ. Toxicol. Chem. 17, 1085–1090. https://doi.org/10.1002/etc.5620170614 (1998).

    CAS  Article  Google Scholar 

  • 69.

    Magnusson, M., Heimann, K., Ridd, M. & Negri, A. P. Chronic herbicide exposures affect the sensitivity and community structure of tropical benthic microalgae. Mar. Pollut. Bull. 65, 363–372. https://doi.org/10.1016/j.marpolbul.2011.09.029 (2012).

    CAS  Article  Google Scholar 

  • 70.

    Tuchman, N. C., Schollett, M. A., Rier, S. T. & Geddes, P. Differential heterotrophic utilization of organic compounds by diatoms and bacteria under light and dark conditions. Hydrobiologia 561, 167–177. https://doi.org/10.1007/s10750-005-1612-4 (2006).

    CAS  Article  Google Scholar 

  • 71.

    APVMA. Australian Pesticides and Veterinary Medicines Authority. https://apvma.gov.au/ (2019).

  • 72.

    EPA. U.S. Environmental Protection Agency. https://www.epa.gov/pesticides (2020).

  • 73.

    EC. European Commission. EU Pesticides database. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/ (2020).

  • 74.

    Novic, A. J. et al. Monitoring herbicide concentrations and loads during a flood event: a comparison of grab sampling with passive sampling. Environ. Sci. Technol. 51, 3880–3891. https://doi.org/10.1021/acs.est.6b02858 (2017).

    ADS  CAS  Article  Google Scholar 

  • 75.

    Mercurio, P. Herbicide persistence and toxicity in the tropical marine environment. PhD University of Queensland. 148 p. https://doi.org/10.14264/uql.2016.722 (2016).

  • 76.

    MacBean, C. The pesticide manual: a world compendium, 6th Edition 598–601 (British Crop Production Council (BCPC), Alton, 2012).

  • 77.

    Huerlimann, R. & Heimann, K. Comprehensive guide to acetyl-carboxylases in algae. Crit. Rev. Biotechnol. 33, 49–65. https://doi.org/10.3109/07388551.2012.668671 (2013).

    CAS  Article  Google Scholar 

  • 78.

    Kukorelli, G., Reisinger, P. & Pinke, G. ACCase inhibitor herbicides – selectivity, weed resistance and fitness cost: a review. Int. J. Pest Manage. 59, 165–173. https://doi.org/10.1080/09670874.2013.821212 (2013).

    CAS  Article  Google Scholar 

  • 79.

    Huerlimann, R., Zenger, K. R., Jerry, D. R. & Heimann, K. Phylogenetic analysis of nucleus-encoded acetyl-CoA carboxylases targeted at the cytosol and plastid of algae. PLoS ONE https://doi.org/10.1371/journal.pone.0131099 (2015).

    Article  Google Scholar 

  • 80.

    Tang, C. Y., Huang, Z. & Allen, H. C. Interfacial water structure and effects of Mg2+ and Ca2+ binding to the COOH headgroup of a palmitic acid monolayer studied by sum frequency spectroscopy. J. Phys. Chem. B 115, 34–40. https://doi.org/10.1021/jp1062447 (2010).

    CAS  Article  Google Scholar 

  • 81.

    Brzozowska, A., Duits, M. H. & Mugele, F. Stability of stearic acid monolayers on Artificial Sea Water. Colloids Surf. Physicochem. Eng. Aspects 407, 38–48. https://doi.org/10.1016/j.colsurfa.2012.04.055 (2012).

    CAS  Article  Google Scholar 

  • 82.

    Bengston-Nash, S. M., Schreiber, U., Ralph, P. J. & Muller, J. F. The combined SPE : ToxY-PAM phytotoxicity assay; application and appraisal of a novel biomonitoring tool for the aquatic environment. Biosens. Bioelectron. 20, 1443–1451. https://doi.org/10.1016/j.bios.2004.09.019 (2005).

    CAS  Article  Google Scholar 

  • 83.

    Schreiber, U., Quayle, P., Schmidt, S., Escher, B. I. & Mueller, J. F. Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging. Biosens. Bioelectron. 22, 2554–2563. https://doi.org/10.1016/j.bios.2006.10.018 (2007).

    CAS  Article  Google Scholar 

  • 84.

    Haynes, D., Muller, J. & Carter, S. Pesticide and herbicide residues in sediments and seagrasses from the Great Barrier Reef World Heritage Area and Queensland coast. Mar. Pollut. Bull. 41, 279–287. https://doi.org/10.1016/s0025-326x(00)00097-7 (2000).

    CAS  Article  Google Scholar 

  • 85.

    Ralph, P., Smith, R., Macinnis-Ng, C. & Seery, C. Use of fluorescence-based ecotoxicological bioassays in monitoring toxicants and pollution in aquatic systems. Toxicol. Environ. Chem. 89, 589–607. https://doi.org/10.1080/02772240701561593 (2007).

    CAS  Article  Google Scholar 

  • 86.

    Lemmermann, E. D. grosse Waterneverstorfer Binnensee: Eine biologische Studie. Forsch. Biol. Station Plön 6, 166–205 (1896).

    Google Scholar 

  • 87.

    Li, Y. et al. Diversity in the globally distributed diatom genus Chaetoceros (Bacillariophyceae): three new species from warm-temperate waters. PLoS ONE https://doi.org/10.1371/journal.pone.0168887 (2017).

    Article  Google Scholar 

  • 88.

    Helm, M. M., and Neil Bourne. Hatchery culture of bivalves: a practical manual. Ed. Alessandro Lovatelli. Fisheries Technical Paper 471. Food and Agriculture Organization of the United (FAO), 177 pp (2004).

  • 89.

    Guillard, R. R. & Ryther, J. H. Studies of marine planktonic diatoms: I Cyclotellanana Hustedt, and Detonulaconfervacea (Cleve) Gran. Can. J. Microbiol. 8, 229–239. https://doi.org/10.1139/m62-029 (1962).

    CAS  Article  Google Scholar 

  • 90.

    Schreiber, U., Müller, J. F., Haugg, A. & Gademann, R. New type of dual-channel PAM chlorophyll fluorometer for highly sensitive water toxicity biotests. Photosynth. Res. 74, 317–330. https://doi.org/10.1023/A:1021276003145 (2002).

    CAS  Article  Google Scholar 

  • 91.

    Fisher, R., Ricardo, G., and Fox, D. jags NEC: A Bayesian No Effect Concentration (NEC) package. https://github.com/AIMS/NEC-estimation (2019).

  • 92.

    Fox, D. R. A Bayesian approach for determining the no effect concentration and hazardous concentration in ecotoxicology. Ecotoxicol. Environ. Saf. 73, 123–131. https://doi.org/10.1016/j.ecoenv.2009.09.012 (2010).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale

    Power-free system harnesses evaporation to keep items cool