in

Transcriptomic and life history responses of the mayfly Neocloeon triangulifer to chronic diel thermal challenge

  • 1.

    Angilletta, M. J. Jr. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009).

    Google Scholar 

  • 2.

    Atkinson, D. Temperature and organism size: a biological law for ectortherms?. Adv. Ecol. Res. 25, 1–58 (1994).

    Article  Google Scholar 

  • 3.

    Atkinson, D. & Sibly, R. M. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol. Evol. 12, 235–239 (1997).

    CAS  Article  PubMed  Google Scholar 

  • 4.

    Hynes, H. B. N. The ecology of stream insects. Ann. Rev. Entomol. 15, 25–42 (1970).

    Article  Google Scholar 

  • 5.

    Sweeney, B. W. & Vannote, R. L. Size variation and the distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200, 444–446 (1978).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 6.

    Sweeney, B. W. & Vannote, R. L. Ephemerella mayflies of Whie Clay Creek: bioenergetic and ecological relationships among six coexisting species. Ecology 62, 1353–1369 (1981).

    Article  Google Scholar 

  • 7.

    Sweeney, B. W. & Vannote, R. L. Influence of food quality and temperature on life-history characteristics of the parthenogenetic mayfly Cloeon triangulifer. Freshw. Biol. 14, 621–630 (1984).

    Article  Google Scholar 

  • 8.

    Sweeney, B. W., Funk, D. H., Jackson, J. K., Camp, A. A. & Buchwalter, D. Why a mayfly Cloeon dipterum (Ephemeroptera: Baetidae) gets smaller as temperatures warm. Freshw. Sci. 37, 64–81 (2018).

    Article  Google Scholar 

  • 9.

    Caissie, D. The thermal regime of rivers: a review. Freshw. Biol. 51, 1389–1406 (2006).

    Article  Google Scholar 

  • 10.

    Haidekker, A. & Hering, D. Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: a multivariate study. Aquat. Ecol. 42, 463–481 (2008).

    Article  Google Scholar 

  • 11.

    Woodward, G., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos. Trans. R. Soc. B Biol. Sci. 365, 2093–2106 (2010).

    Article  Google Scholar 

  • 12.

    Woodward, G. et al. The effects of climatic fluctuations and extreme events on running water ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150274 (2016).

    Article  Google Scholar 

  • 13.

    Carpenter, S. R., Fisher, S. G., Grimm, N. B. & Ktchell, J. F. Global change and freshwater ecosystems. Annu. Rev. Ecol. Syst. 23, 119–139 (1992).

    Article  Google Scholar 

  • 14.

    El-Jabi, N., Caissie, D. & Turkkan, N. Water quality index assessment under climate change. J. Water Resour. Prot. 06, 533–542 (2014).

    Article  CAS  Google Scholar 

  • 15.

    Madden, N., Lewis, A. & Davis, M. Thermal effluent from the power sector: an analysis of once-through cooling system impacts on surface water temperature. Environ. Res. Lett. 8, 035006 (2013).

    ADS  Article  Google Scholar 

  • 16.

    Null, S. E., Ligare, S. T. & Viers, J. H. A method to consider whether dams mitigate climate change effects on stream temperatures. JAWRA J. Am. Water Resour. Assoc. 49, 1456–1472 (2013).

    ADS  Article  Google Scholar 

  • 17.

    Schulte, P. M., Healy, T. M. & Fangue, N. A. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 51, 691–702 (2011).

    Article  PubMed  Google Scholar 

  • 18.

    Sweeney, B. W., Jackson, J. K., Newbold, J. D. & Funk, D. H. Climate change and the life histories and biogeography of aquatic insects in Eastern North America. In Global Cilmate Change and Freshwater Ecosystems (eds Firth, P. & Fisher, S.) 143–176 (Springer, Berlin, 1990).

    Google Scholar 

  • 19.

    Hawkins, C. P., Norris, R. H., Hogue, J. N. & Feminella, J. W. Development and evaluation of predictive models for measuring the biological integrity of streams. Ecol. Appl. 10, 1456–1477 (2000).

    Article  Google Scholar 

  • 20.

    Hodkinson, I. D. & Jackson, J. K. Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environ. Manag. 35, 649–666 (2005).

    Article  Google Scholar 

  • 21.

    Bonada, N., Prat, N., Resh, V. H. & Statzner, B. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu. Rev. Entomol. 51, 495–523 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Atkinson, D. Effects of temperature on the size of aquatic ectotherms: exceptions to the general rule. J. Therm. Biol. 20, 61–74 (1995).

    Article  Google Scholar 

  • 23.

    Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: three rules. Evol. Ecol. Res. 10, 251–268 (2008).

    Google Scholar 

  • 24.

    Colinet, H., Sinclair, B. J., Vernon, P. & Renault, D. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 60, 123–140 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 25.

    Conley, J. M., Funk, D. H. & Buchwalter, D. B. Selenium bioaccumulation and maternal transfer in the mayfly Centroptilum triangulifer in a life-cycle, periphyton-biofilm trophic assay. Environ. Sci. Technol. 43, 7952–7957 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 26.

    Conley, J. M., Funk, D. H., Cariello, N. J. & Buchwalter, D. B. Food rationing affects dietary selenium bioaccumulation and life cycle performance in the mayfly Centroptilum triangulifer. Ecotoxicology 20, 1840–1851 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 27.

    Xie, L. T. et al. Cadmium biodynamics in the oligochaete Lumbriculus variegatus and its implications for trophic transfer. Aquat. Toxicol. 86, 265–271 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 28.

    Xie, L. & Buchwalter, D. B. Cadmium exposure route affects antioxidant responses in the mayfly Centroptilum triangulifer. Aquat. Toxicol. 105, 199–205 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Kim, K. S., Funk, D. H. & Buchwalter, D. B. Dietary (periphyton) and aqueous Zn bioaccumulation dynamics in the mayfly Centroptilum triangulifer. Ecotoxicology 21, 2288–2296 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 30.

    Wesner, J. S., Kraus, J. M., Schmidt, T. S., Walters, D. M. & Clements, W. H. Metamorphosis enhances the effects of metal exposure on the mayfly Centroptilum triangulifer. Environ. Sci. Technol. 48, 10415–10422 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 31.

    Soucek, D. J. & Dickinson, A. Full-life chronic toxicity of sodium salts to the mayfly Neocloeon triangulifer in tests with laboratory cultured food. Environ. Toxicol. Chem. 34, 2126–2137 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 32.

    Kunz, J. L. et al. Use of reconstituted waters to evaluate effects of elevated major ions associated with mountaintop coal mining on freshwater invertebrates. Environ. Toxicol. Chem. 32, 2826–2835 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    Orr, S. E. & Buchwalter, D. B. It’s all about the fluxes: temperature influences ion transport and toxicity in aquatic insects. Aquat. Toxicol. 221, 105405 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 34.

    Buchwalter, D., Scheibener, S., Chou, H., Soucek, D. & Elphick, J. Are sulfate effects in the mayfly Neocloeon triangulifer driven by the cost of ion regulation?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180013 (2018).

    Article  CAS  PubMed  Google Scholar 

  • 35.

    Jackson John, K. & Funk David, H. Temperature affects acute mayfly responses to elevated salinity: implications for toxicity of road de-icing salts. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180081 (2019).

    Article  CAS  Google Scholar 

  • 36.

    Kim, K. S. et al. Physiological responses to short-term thermal stress in mayfly (Neocloeon triangulifer) larvae in relation to upper thermal limits. J. Exp. Biol. 220, 2598–2605 (2017).

    Article  PubMed  Google Scholar 

  • 37.

    Chou, H., Pathmasiri, W., Deese-Spruill, J., Sumner, S. & Buchwalter, D. B. Metabolomics reveal physiological changes in mayfly larvae (Neocloeon triangulifer) at ecological upper thermal limits. J. Insect. Physiol. https://doi.org/10.1016/j.jinsphys.2017.07.008 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    Chou, H. et al. The good, the bad, and the lethal: gene expression and metabolomics reveal physiological mechanisms underlying chronic thermal effects in mayfly larvae (Neocloeon triangulifer). Front. Ecol. Evol. 101, 107–112 (2018).

    ADS  Google Scholar 

  • 39.

    Funk, D. H., Jackson, J. K. & Sweeney, B. W. Taxonomy and genetics of the parthenogenetic mayfly Centroptilum triangulifer and its sexual sister Centroptilum alamance (Ephemeroptera: Baetidae). J. North Am. Benthol. Soc. 25, 417–429 (2006).

    Article  Google Scholar 

  • 40.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 42.

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Article  CAS  Google Scholar 

  • 43.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  CAS  PubMed  Google Scholar 

  • 44.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 45.

    Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 46.

    Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 47.

    Ramani, A. K. et al. High resolution transcriptome maps for wild-type and nonsense-mediated decay-defective Caenorhabditis elegans. Genome Biol. 10, R101 (2009).

    Article  CAS  PubMed  Google Scholar 

  • 48.

    Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 49.

    Yassour, M. et al. Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing. Proc. Natl. Acad. Sci. U. S. A. 106, 3264–3269 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 50.

    Katz, B. & Minke, B. Drosophila photoreceptors and signaling mechanisms. Front. Cell. Neurosci. 3, 2 (2009).

    Article  CAS  PubMed  Google Scholar 

  • 51.

    Shen, W. L. et al. Function of rhodopsin in temperature discrimination in drosophila. Science 331, 1333–1336 (2011).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 52.

    Wheeler, D. A., Hamblen-Coyle, M. J., Dushay, M. S. & Hall, J. C. Behavior in light–dark cycles of drosophila mutants that are arrhythmic, blind, or both. J. Biol. Rhythms https://doi.org/10.1177/074873049300800106 (2016).

    Article  Google Scholar 

  • 53.

    Miyasako, Y., Umezaki, Y. & Tomioka, K. Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of drosophila circadian locomotor rhythms. J. Biol. Rhythms 22, 115–126 (2007).

    Article  PubMed  Google Scholar 

  • 54.

    Verberk, W. C. & Bilton, D. T. Oxygen-limited thermal tolerance is seen in a plastron-breathing insect and can be induced in a bimodal gas exchanger. J. Exp. Biol. 218, 2083–2088 (2015).

    Article  PubMed  Google Scholar 

  • 55.

    Verberk, W. C., Bilton, D. T., Calosi, P. & Spicer, J. I. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns. Ecology 92, 1565–1572 (2011).

    Article  PubMed  Google Scholar 

  • 56.

    Verberk, W. C. E. P., Sommer, U., Davidson, R. L. & Viant, M. R. Anaerobic metabolism at thermal extremes: a metabolomic test of the oxygen limitation hypothesis in an aquatic insect. Integr. Comp. Biol. 53, 609–619 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 57.

    Merzendorfer, H. & Zimoch, L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol. 206, 4393–4412 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 58.

    White, B. J. et al. Localization of candidate regions maintaining a common polymorphic inversion (2La) in Anopheles gambiae. PLoS Genet. preprint, e217 (2005).

  • 59.

    Zhao, L., Wit, J., Svetec, N. & Begun, D. J. Parallel gene expression differences between low and high latitude populations of drosophila melanogaster and D. simulans. PLOS Genet. 11, e1005184 (2015).

    Article  CAS  PubMed  Google Scholar 

  • 60.

    Beament, J. W. L. The waterproofing mechanism of arthropods: I. The effect of temperature on cuticle permeability in terrestrial insects and ticks. J. Exp. Biol. 36, 391–422 (1959).

    CAS  Google Scholar 

  • 61.

    Dennis, A. B., Dunning, L. T., Sinclair, B. J. & Buckley, T. R. Parallel molecular routes to cold adaptation in eight genera of New Zealand stick insects. Sci. Rep. 5, 13965 (2015).

    ADS  Article  PubMed  Google Scholar 

  • 62.

    Camp, A. A., Funk, D. H. & Buchwalter, D. B. A sressful shortness of breath: molting disrupts breathing in the mayfly Cloeon dipterum. Freshw. Sci. 33, 695–699 (2014).

    Article  Google Scholar 

  • 63.

    Butenandt, A. & Karlson, P. Über die Isolierung eines Metamorphose-Hormons der Insekten in kristallisierter Form. Z. Für Naturforschung B 9, 389–391 (1954).

    Article  Google Scholar 

  • 64.

    Charles, J. P. The regulation of expression of insect cuticle protein genes. Insect. Biochem. Mol. Biol. 40, 205–213 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 65.

    Rees, H. H. Zooecdysteroids: structure and occurrence. In Ecdysone: From Chemistry to Mode of Action (ed. Koolman, J.) (Thieme, Berlin, 1989).

    Google Scholar 

  • 66.

    Davenport, A. P. & Evans, P. D. Stress-induced changes in the octopamine levels of insect haemolymph. Insect. Biochem. 14, 135–143 (1984).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Reanalysis of putative ovarian follicles suggests that Early Cretaceous birds were feeding not breeding

    Increased mosquito abundance and species richness in Connecticut, United States 2001–2019