Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
Estes, J. A., Tinker, M. T., Williams, T. M. & Doak, D. F. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282, 473–476 (1998).
Hamilton, S. L. & Caselle, J. E. Exploitation and recovery of a sea urchin predator has implications for the resilience of southern California kelp forests. Proc. R. Soc. B Biol. Sci. 282, 20141817 (2015).
Power, M. E. Effects of fish in river food webs. Science 250, 811–814 (1990).
Saleem, M. Loss of microbiome ecological niches and diversity by global change and trophic downgrading. Microbiome Commun. Ecol. 20, 89–113 (2015).
Risch, A. C. et al. Size-dependent loss of aboveground animals differentially affects grassland ecosystem coupling and functions. Nat. Commun. 9, 1–11 (2018).
Eisaguirre, J. H. et al. Trophic redundancy and predator size class structure drive differences in kelp forest ecosystem dynamics. Ecology 101, e02993 (2020).
Stromayer, K. A. & Warren, R. J. Are overabundant deer herds in the eastern United States creating alternate stable states in forest plant communities?. Wildl. Soc. Bul. 25, 227–234 (1997).
Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Cons. 29, 436–459 (2002).
Strickland, M. S., Hawlena, D., Reese, A., Bradford, M. A. & Schmitz, O. J. Trophic cascade alters ecosystem carbon exchange. Proc. Natl. Acad. Sci. 110, 11035–11038 (2013).
Atwood, T. B. et al. Predator-induced reduction of freshwater carbon dioxide emissions. Nat. Geosci. 6, 191–194 (2013).
Edwards, M. S. et al. Marine deforestation leads to widespread loss of ecosystem function. PLoS One https://doi.org/10.1371/journal.pone.0226173 (2020).
Ripple, W. J. & Becshta, R. L. Hardwood tree decline following large carnivore loss on the Great Plains, USA. Front. Ecol. Environ. 5, 241–246 (2004).
Ripple, W. J. Wolves and the ecology of fear: Can predation risk structure ecosystems. Bioscience 54, 55–766 (2004).
Beschta, R. L. & Ripple, W. J. Recovering riparian plant communities with wolves in northern Yellowstone, USA. Rest. Ecol. 18, 380–389 (2010).
Metzger, J. R., Konar, B. & Edwards, M. S. Assessing a macroalgal foundation species: Community variation with shifting algal assemblages. Mar. Biol. 166, 156 (2019).
Gabara, S, Konar, B. & Edwards, M. Biodiversity loss leads to reductions in community-wide trophic complexity. Ecosphere. (in press).
Hamilton, S. L., Caselle, J. E., Malone, D. P. & Carr, M. H. Incorporating biogeography into evaluations of the Channel Islands marine reserve network. Proc. Natl. Acad. Sci. 107, 18272–18277 (2010).
Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl. Acad. Sci. 112, 14894–14899 (2015).
Mellin, C., MacNeil, A. M., Cheal, A. J., Emslie, M. J. & Caley, J. M. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629–637 (2016).
Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).
Bengtsson, J., Baillie, S. R. & Lawton, J. Community variability increases with time. Oikos 78, 249–256 (1997).
Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).
Deutschman, D. H., Levin, S. A., Devine, C. & Buttel, L. A. Scaling from trees to forests: Analysis of a complex simulation model. Science 277, 1688 (1997).
Brown, B. L. Spatial heterogeneity reduces temporal variability in stream insect communities. Ecol. Lett. 6, 316–325 (2003).
Hughes, T. P. et al. Patterns of recruitment and abundance of corals along the Great Barrier Reef. Nature 397, 59–63 (1999).
Edwards, M. S. & Estes, J. A. Catastrophe, recovery, and range limitation in NE Pacific kelp forests: A large-scale perspective. Mar. Ecol. Prog. Ser. 320, 79–87 (2006).
Parepa, M., Fischer, M. & Bossdorf, O. Environmental variability priomotes plant invasion. Nat. Commun. 4, 1604 (2013).
Dunstan, P. K. & Johnson, C. R. Linking richness, community variability, and invasion resisteance with patch size. Ecology 87, 2842–2850 (2006).
Prevéy, J. S., Germino, M. J., Huntly, N. J. & Inouye, R. S. Exotic plants increase and native plants decrease with loss of foundation species in sagebrush steppe. Plant Ecol. 207, 39–51 (2010).
Marks, L. M., Reed, D. C. & Obaza, A. K. Assessment of control methods for the invasive seaweed Sargassum horneri in California, USA. Manag. Biol. Invasions 8, 205–213 (2017).
Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).
Edwards, M. S. Estimating scale-dependency in disturbance impacts: El Niños and giant kelp forests in the northeast Pacific. Oecologia 138, 436–447 (2004).
Dayton, P. K. & Tegner, M. J. The importance of scale in community ecology: A kelp forest example with terrestrial analogs. In A New Ecology: Novel Approaches To Interactive Systems (eds Price, P. W. et al.) (Wiley, New York, 1984).
Jenkinson, R. S., Hovel, K. A., Dunn, R. P. & Edwards, M. S. Biogeographical variation in the distribution, abundance, and interactions among key species on rocky reefs of the northeast Pacific. Mar. Ecol. Prog. Ser. 648, 51–65 (2020).
Mann, K. H. Seaweeds: Their productivity and strategy for growth: The role of large marine algae in coastal productivity is far more important than has been suspected. Science 182, 975–981 (1973).
Leith, H. & Whittaker, R. H. Primary Productivity of the Biosphere (Springer, Berin, 1975).
Reed, D. C. & Brzezinski, M. A. Kelp forests. In The Management of Natural Coastal Carbon Sinks (eds Laffoley, D. & Grimsditch, G.) 31 (Springer, Gland, 2009).
Spector, M. & Edwards, M. S. Modelling the impacts of kelp deforestation on benthic primary production on temperate rocky reefs. Algae 35, 1–16 (2020).
Dayton, P. K. Ecology of kelp communities. Ann. Rev. Ecol. Syst. 16, 215–245 (1985).
Krumhansl, K. A. & Scheibling, R. E. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467, 281–302 (2012).
Estes, J. A. et al. Complex trophic interactions in kelp forest ecosystems. Bull. Mar. Sci. 74, 621–638 (2004).
Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. 113, 13785–13790 (2016).
Kriegisch, N., Reeves, S. E., Johnson, C. R. & Ling, S. D. Top-down sea urchin overgrazing overwhelms bottom-up stimulation of kelp beds despite sediment enhanncement. J. Exp. Mar. Biol. Ecol. 514(515), 48–58 (2019).
Schiebling, R. E., Hennigar, A. W. & Balch, T. Destructive grazing, epiphytism, and disease: The dynamics of sea urchin—kelp interactions in Nova Scotia. Can. J. Fish. Sci. Aquat. 56, 2300–2314 (1999).
Fagerli, C. W., Norderhaug, K. M. & Christie, H. C. Lack of sea urchin settlement may explain kelp forest recovery in overgrazed areas in Norway. Mar. Ecol. Prog. Ser. 488, 119–132 (2012).
Filbee-Dexter, K. & Scheibling, R. E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).
Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-drivebn catastrophic phase shift. Proc. Natl. Acad. Sci. 106, 22341–22345 (2009).
Simenstad, C. A., Estes, J. A. & Kenyon, K. W. Aleuts, sea otters, and alternate stable state communities. Science 200, 403–411 (1978).
Christie, H., Norderhaug, K. M. & Fredriksen, S. Macrophytes as habitat for fauna. Mar. Ecol. Prog. Ser. 396, 221–233 (2009).
Greig-Smith, P. Pattern in vegetation. J. Ecol. 67, 755–779 (1979).
Clark, W. C. Scales of climate impacts. Clim. Change 7, 5–27 (1985).
Woodward, F. I. Climate and Plant Distribution (Cambridge University Press, Cambridge, 1987).
Levin, S. A. Multiple scales and the maintenance of biodiversity. Ecosystems 3, 498–506 (2000).
Edwards, M.S. Scale-dependent patterns of community regulation in giant kelp forests. Ph.D. dissertation, University of California Santa Cruz (2001).
Estes, J. A. Serendipity: An Ecologists Quest to understand Nature (University of California Press, California, 2016) ((ISBN-13:978-0520285033)).
Doroff, A. M. et al. Sea otter population declines in the Aleutian archipelago. J. Mammal. 84, 55–64 (2003).
Konar, B. K., Edwards, M. S. & Estes, J. A. Biological interactions maintain the boundaries between kelp forests and urchin barrens in the Aleutian Archipelago. Hydrobiol. 724, 91–107 (2014).
Graham, M. H. & Edwards, M. S. Statistical significance versus factor fit: Estimating the importance of individual factor in ecological analysis of variance. Oikos 93, 505–513 (2001).
Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods (K PRIMER-E, Plymouth, 2006).
Estes, J. A. & Duggins, D. O. Sea otters and kelp forests in Alaska: Generality and variation in a community ecological paradigm. Ecol. Monogr. 65, 75–100 (1995).
Levin, S. A. Challenges in the development of a theory of ecosystem structure and function. In Perspectives in Ecological Theory (eds Roughgarden, J. et al.) 242–255 (Princeton, Princeton University Press, 1989).
Tegner, M. J., Dayton, P. K., Edwards, P. B. & Riser, K. L. Large-scale, low-frequency oceanographic effects on kelp forest successions: A tale of two cohorts. Mar. Ecol. Prog. Ser. 146, 17–134 (1997).
Karlson, R. H. & Cornell, H. V. Scale-dependent variation in local vs regional effects on coral species richness. Ecol. Monogr. 68, 259–274 (1998).
Reed, R. K. & Stabeno, P. J. The recent return of the Alaskan Stream to Near Strait. J. Mar. Res. 51, 515–527 (1993).
Ladd, C., Hunt, G. L., Mordy, C. W., Salo, S. A. & Stabeno, P. J. Marine environment of the eastern and central Aleutian Islands. Fish. Oceanogr. 14, 22–38 (2005).
Reed, R. K. & Stabeno, P. J. The Aleutian North slope current. In Dynamics of the Bering Sea 177–191 (University of Alaska Sea Grant, Alaska, 1999).
Stabeno, P. J. & Reed, R. K. A major circulation anomaly in the western Bering Sea. Geophys. Res. Let. 19, 1671–1674 (1992).
Hunt, G. L. & Stabeno, P. J. Oceanography and ecology of the Aleutian Archipelago: Spatial and temporal variation. Fish. Oceanogr. 14, 292–306 (2005).
Konar, et al. A swath across the great divide: Kelp forests across the Samalga Pass biogeographic break. Cont. Shelf Res. 143, 78–88 (2017).
Wilkinson, C. R. & Cheshire, A. C. Patterns in the distribution of sponge populations across the central Great Barrier Reef. Coral Reefs 8, 127–134 (1989).
Wilkinson, C. R. & Cheshire, A. C. Comparisons of sponge populations across the Barrier Reefs of Australia and Belize: Evidence for higher productivity in the Caribbean. Mar. Ecol. Prog. Ser. 67, 285–294 (1990).
Dayton, P. K., Tegner, M. J., Edwards, P. B. & Riser, K. L. Temporal and spatial scales of kelp demography: The role of oceanographic climate. Ecol. Monogr. 69, 219–250 (1999).
Konar, B., Edwards, M. & Efird, T. Local habitat and regional oceanographic influence on fish distribution patterns in the diminishing kelp forests across the Aleutian Archipelago. Environ. Biol. Fish. 98, 1935–1951 (2015).
Blanchette, C. A., Broitman, B. R. & Gaines, S. D. Intertidal community structure and oceanographic patterns around Santa Cruz Island, CA, USA. Mar. Biol. 149, 689–701 (2006).
García-Charton, J. A. et al. Multi-scale spatial heterogeneity, habitat structure, and the effect of marine reserves on Western Mediterranean rocky reef fish assemblages. Mar. Biol. 144, 161–182 (2004).
Hewitt, J. E., Thrush, S. F. & Dayton, P. D. Habitat variation, species diversity and ecological functioning in a marine system. J. Exp. Mar. Biol. Ecol. 366, 116–122 (2008).
Bland, A., Konar, B. & Edwards, M. Spatial trends and environmental drivers of epibenthic shelf community structure across the Aleutian Islands. Cont. Shelf Res. 175, 12–29 (2019).
Bruno, J. F., Petes, L. E., Drew Harvell, C. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061 (2003).
Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Cons. Biol. 21, 1301–1315 (2007).
Hoffman, G. et al. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS One 20, 20 (2011).
Svenning, J. C. et al. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proc. Natl. Acad. Sci. 113, 898–906 (2016).
Stewart, N. & Konar, B. Kelp forests versus urchin barrens: Alternate stable states and their effect on sea otter prey quality in the Aleutian Islands. J. Mar. Sci. https://doi.org/10.1155/2012/492308 (2012).
Rogachev, K. A. & Shlyk, N. V. The role of the Aleutian eddies in the Kamchatka current warming. Russ. Meteorol. Hydrol. 43, 43–48 (2018).
Scheibling, R. E. & Hennigar, A. W. Recurrent outbreaks of disease in sea urchins Strongylocentrotus droebachiensis in Nova Scotia: Evidence for a link with large-scale meterologic and oceanographic events. Mar. Ecol. Prog. Ser. 152, 155–165 (1997).
Girard, D., Clemente, S., Toledo-Guedes, K., Brito, A. & Hernández, J. C. A mass mortality of subtropical intertidal populations of the sea urchin Paracentrotus lividus: Analysis of potential links with environmental conditions. Mar. Ecol. 33, 377–385 (2012).
Feehan, C. J. & Scheibling, R. E. Disease as a control of sea urchin populations in Nova Scotian kelp beds. Mar. Ecol. Prog. Ser. 500, 149–158 (2014).
Hagen, N. T. Sea urchin outbreaks and nematode epizootics in Vestfjorden, northern Norway. Sarsia 72, 213–229 (1987).
Shimizu, M. & Nagakura, K. Acid phosphatase activity in the body wall of the sea urchin, Strongylocentrotus intermedius, cultured at varying water temperatures. Comp. Biochem. Physiol. 106B, 303–307 (1993).
Wang, Y. et al. Isolation and characterization of bacteria associated with a syndrome disease of sea urchin Strongylocentrotus intermedius in North China. Aquacult. Res. 44, 691–700 (2013).
Behrens, M. D. & Lafferty, K. D. Effects of marine reserves and urchin disease on southern Californian rocky reef communities. Mar. Ecol. Prog. Ser. 279, 129–139 (2004).
Feehan, C. J. & Scheibling, R. E. A mass mortality of subtropical intertidal populations of the sea urchin Paracentrotus lividus: Analysis of potential links with environmental conditions. Mar. Biol. 161, 1467–1485 (2014).
Stabeno, P. J., Kachel, D. G., Kachel, N. B. & Sullivan, M. E. Observations from moorings in the Aleutian Passes: Temperature, salinity and transport. Fish. Oceanogr. 14, 39–54 (2005).
Favorite, F. Flow into the Bering Sea through the Aleutian Passes. In Oceanography of the Bering Sea with Emphasis on Renewable Resources (eds Hood, D. W. & Kelly, E. J.) 3–37 (Institute of Marine Science University of Alaska, Fairbanks, 1974).
Source: Ecology - nature.com