in

Trophic downgrading reduces spatial variability on rocky reefs

  • 1.

    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Estes, J. A., Tinker, M. T., Williams, T. M. & Doak, D. F. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282, 473–476 (1998).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Hamilton, S. L. & Caselle, J. E. Exploitation and recovery of a sea urchin predator has implications for the resilience of southern California kelp forests. Proc. R. Soc. B Biol. Sci. 282, 20141817 (2015).

    Article  Google Scholar 

  • 4.

    Power, M. E. Effects of fish in river food webs. Science 250, 811–814 (1990).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 5.

    Saleem, M. Loss of microbiome ecological niches and diversity by global change and trophic downgrading. Microbiome Commun. Ecol. 20, 89–113 (2015).

    Google Scholar 

  • 6.

    Risch, A. C. et al. Size-dependent loss of aboveground animals differentially affects grassland ecosystem coupling and functions. Nat. Commun. 9, 1–11 (2018).

    CAS  Article  Google Scholar 

  • 7.

    Eisaguirre, J. H. et al. Trophic redundancy and predator size class structure drive differences in kelp forest ecosystem dynamics. Ecology 101, e02993 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Stromayer, K. A. & Warren, R. J. Are overabundant deer herds in the eastern United States creating alternate stable states in forest plant communities?. Wildl. Soc. Bul. 25, 227–234 (1997).

    Google Scholar 

  • 9.

    Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Cons. 29, 436–459 (2002).

    Article  Google Scholar 

  • 10.

    Strickland, M. S., Hawlena, D., Reese, A., Bradford, M. A. & Schmitz, O. J. Trophic cascade alters ecosystem carbon exchange. Proc. Natl. Acad. Sci. 110, 11035–11038 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Atwood, T. B. et al. Predator-induced reduction of freshwater carbon dioxide emissions. Nat. Geosci. 6, 191–194 (2013).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Edwards, M. S. et al. Marine deforestation leads to widespread loss of ecosystem function. PLoS One https://doi.org/10.1371/journal.pone.0226173 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Ripple, W. J. & Becshta, R. L. Hardwood tree decline following large carnivore loss on the Great Plains, USA. Front. Ecol. Environ. 5, 241–246 (2004).

    Article  Google Scholar 

  • 14.

    Ripple, W. J. Wolves and the ecology of fear: Can predation risk structure ecosystems. Bioscience 54, 55–766 (2004).

    Article  Google Scholar 

  • 15.

    Beschta, R. L. & Ripple, W. J. Recovering riparian plant communities with wolves in northern Yellowstone, USA. Rest. Ecol. 18, 380–389 (2010).

    Article  Google Scholar 

  • 16.

    Metzger, J. R., Konar, B. & Edwards, M. S. Assessing a macroalgal foundation species: Community variation with shifting algal assemblages. Mar. Biol. 166, 156 (2019).

    Article  Google Scholar 

  • 17.

    Gabara, S, Konar, B. & Edwards, M. Biodiversity loss leads to reductions in community-wide trophic complexity. Ecosphere. (in press).

  • 18.

    Hamilton, S. L., Caselle, J. E., Malone, D. P. & Carr, M. H. Incorporating biogeography into evaluations of the Channel Islands marine reserve network. Proc. Natl. Acad. Sci. 107, 18272–18277 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl. Acad. Sci. 112, 14894–14899 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 20.

    Mellin, C., MacNeil, A. M., Cheal, A. J., Emslie, M. J. & Caley, J. M. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629–637 (2016).

    PubMed  Article  Google Scholar 

  • 21.

    Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).

    Article  Google Scholar 

  • 22.

    Bengtsson, J., Baillie, S. R. & Lawton, J. Community variability increases with time. Oikos 78, 249–256 (1997).

    Article  Google Scholar 

  • 23.

    Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).

    Article  Google Scholar 

  • 24.

    Deutschman, D. H., Levin, S. A., Devine, C. & Buttel, L. A. Scaling from trees to forests: Analysis of a complex simulation model. Science 277, 1688 (1997).

    Article  Google Scholar 

  • 25.

    Brown, B. L. Spatial heterogeneity reduces temporal variability in stream insect communities. Ecol. Lett. 6, 316–325 (2003).

    Article  Google Scholar 

  • 26.

    Hughes, T. P. et al. Patterns of recruitment and abundance of corals along the Great Barrier Reef. Nature 397, 59–63 (1999).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Edwards, M. S. & Estes, J. A. Catastrophe, recovery, and range limitation in NE Pacific kelp forests: A large-scale perspective. Mar. Ecol. Prog. Ser. 320, 79–87 (2006).

    ADS  Article  Google Scholar 

  • 28.

    Parepa, M., Fischer, M. & Bossdorf, O. Environmental variability priomotes plant invasion. Nat. Commun. 4, 1604 (2013).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 29.

    Dunstan, P. K. & Johnson, C. R. Linking richness, community variability, and invasion resisteance with patch size. Ecology 87, 2842–2850 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Prevéy, J. S., Germino, M. J., Huntly, N. J. & Inouye, R. S. Exotic plants increase and native plants decrease with loss of foundation species in sagebrush steppe. Plant Ecol. 207, 39–51 (2010).

    Article  Google Scholar 

  • 31.

    Marks, L. M., Reed, D. C. & Obaza, A. K. Assessment of control methods for the invasive seaweed Sargassum horneri in California, USA. Manag. Biol. Invasions 8, 205–213 (2017).

    Article  Google Scholar 

  • 32.

    Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).

    Article  Google Scholar 

  • 33.

    Edwards, M. S. Estimating scale-dependency in disturbance impacts: El Niños and giant kelp forests in the northeast Pacific. Oecologia 138, 436–447 (2004).

    ADS  PubMed  Article  Google Scholar 

  • 34.

    Dayton, P. K. & Tegner, M. J. The importance of scale in community ecology: A kelp forest example with terrestrial analogs. In A New Ecology: Novel Approaches To Interactive Systems (eds Price, P. W. et al.) (Wiley, New York, 1984).

    Google Scholar 

  • 35.

    Jenkinson, R. S., Hovel, K. A., Dunn, R. P. & Edwards, M. S. Biogeographical variation in the distribution, abundance, and interactions among key species on rocky reefs of the northeast Pacific. Mar. Ecol. Prog. Ser. 648, 51–65 (2020).

    ADS  Article  Google Scholar 

  • 36.

    Mann, K. H. Seaweeds: Their productivity and strategy for growth: The role of large marine algae in coastal productivity is far more important than has been suspected. Science 182, 975–981 (1973).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 37.

    Leith, H. & Whittaker, R. H. Primary Productivity of the Biosphere (Springer, Berin, 1975).

    Google Scholar 

  • 38.

    Reed, D. C. & Brzezinski, M. A. Kelp forests. In The Management of Natural Coastal Carbon Sinks (eds Laffoley, D. & Grimsditch, G.) 31 (Springer, Gland, 2009).

    Google Scholar 

  • 39.

    Spector, M. & Edwards, M. S. Modelling the impacts of kelp deforestation on benthic primary production on temperate rocky reefs. Algae 35, 1–16 (2020).

    Article  Google Scholar 

  • 40.

    Dayton, P. K. Ecology of kelp communities. Ann. Rev. Ecol. Syst. 16, 215–245 (1985).

    Article  Google Scholar 

  • 41.

    Krumhansl, K. A. & Scheibling, R. E. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467, 281–302 (2012).

    ADS  Article  Google Scholar 

  • 42.

    Estes, J. A. et al. Complex trophic interactions in kelp forest ecosystems. Bull. Mar. Sci. 74, 621–638 (2004).

    ADS  Google Scholar 

  • 43.

    Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. 113, 13785–13790 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Kriegisch, N., Reeves, S. E., Johnson, C. R. & Ling, S. D. Top-down sea urchin overgrazing overwhelms bottom-up stimulation of kelp beds despite sediment enhanncement. J. Exp. Mar. Biol. Ecol. 514(515), 48–58 (2019).

    Article  Google Scholar 

  • 45.

    Schiebling, R. E., Hennigar, A. W. & Balch, T. Destructive grazing, epiphytism, and disease: The dynamics of sea urchin—kelp interactions in Nova Scotia. Can. J. Fish. Sci. Aquat. 56, 2300–2314 (1999).

    Article  Google Scholar 

  • 46.

    Fagerli, C. W., Norderhaug, K. M. & Christie, H. C. Lack of sea urchin settlement may explain kelp forest recovery in overgrazed areas in Norway. Mar. Ecol. Prog. Ser. 488, 119–132 (2012).

    ADS  Article  Google Scholar 

  • 47.

    Filbee-Dexter, K. & Scheibling, R. E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).

    ADS  Article  Google Scholar 

  • 48.

    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-drivebn catastrophic phase shift. Proc. Natl. Acad. Sci. 106, 22341–22345 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 49.

    Simenstad, C. A., Estes, J. A. & Kenyon, K. W. Aleuts, sea otters, and alternate stable state communities. Science 200, 403–411 (1978).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 50.

    Christie, H., Norderhaug, K. M. & Fredriksen, S. Macrophytes as habitat for fauna. Mar. Ecol. Prog. Ser. 396, 221–233 (2009).

    ADS  Article  Google Scholar 

  • 51.

    Greig-Smith, P. Pattern in vegetation. J. Ecol. 67, 755–779 (1979).

    Article  Google Scholar 

  • 52.

    Clark, W. C. Scales of climate impacts. Clim. Change 7, 5–27 (1985).

    ADS  Article  Google Scholar 

  • 53.

    Woodward, F. I. Climate and Plant Distribution (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  • 54.

    Levin, S. A. Multiple scales and the maintenance of biodiversity. Ecosystems 3, 498–506 (2000).

    Article  Google Scholar 

  • 55.

    Edwards, M.S. Scale-dependent patterns of community regulation in giant kelp forests. Ph.D. dissertation, University of California Santa Cruz (2001).

  • 56.

    Estes, J. A. Serendipity: An Ecologists Quest to understand Nature (University of California Press, California, 2016) ((ISBN-13:978-0520285033)).

    Google Scholar 

  • 57.

    Doroff, A. M. et al. Sea otter population declines in the Aleutian archipelago. J. Mammal. 84, 55–64 (2003).

    Article  Google Scholar 

  • 58.

    Konar, B. K., Edwards, M. S. & Estes, J. A. Biological interactions maintain the boundaries between kelp forests and urchin barrens in the Aleutian Archipelago. Hydrobiol. 724, 91–107 (2014).

    Article  Google Scholar 

  • 59.

    Graham, M. H. & Edwards, M. S. Statistical significance versus factor fit: Estimating the importance of individual factor in ecological analysis of variance. Oikos 93, 505–513 (2001).

    Article  Google Scholar 

  • 60.

    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods (K PRIMER-E, Plymouth, 2006).

    Google Scholar 

  • 61.

    Estes, J. A. & Duggins, D. O. Sea otters and kelp forests in Alaska: Generality and variation in a community ecological paradigm. Ecol. Monogr. 65, 75–100 (1995).

    Article  Google Scholar 

  • 62.

    Levin, S. A. Challenges in the development of a theory of ecosystem structure and function. In Perspectives in Ecological Theory (eds Roughgarden, J. et al.) 242–255 (Princeton, Princeton University Press, 1989).

    Google Scholar 

  • 63.

    Tegner, M. J., Dayton, P. K., Edwards, P. B. & Riser, K. L. Large-scale, low-frequency oceanographic effects on kelp forest successions: A tale of two cohorts. Mar. Ecol. Prog. Ser. 146, 17–134 (1997).

    Article  Google Scholar 

  • 64.

    Karlson, R. H. & Cornell, H. V. Scale-dependent variation in local vs regional effects on coral species richness. Ecol. Monogr. 68, 259–274 (1998).

    Article  Google Scholar 

  • 65.

    Reed, R. K. & Stabeno, P. J. The recent return of the Alaskan Stream to Near Strait. J. Mar. Res. 51, 515–527 (1993).

    Article  Google Scholar 

  • 66.

    Ladd, C., Hunt, G. L., Mordy, C. W., Salo, S. A. & Stabeno, P. J. Marine environment of the eastern and central Aleutian Islands. Fish. Oceanogr. 14, 22–38 (2005).

    Article  Google Scholar 

  • 67.

    Reed, R. K. & Stabeno, P. J. The Aleutian North slope current. In Dynamics of the Bering Sea 177–191 (University of Alaska Sea Grant, Alaska, 1999).

    Google Scholar 

  • 68.

    Stabeno, P. J. & Reed, R. K. A major circulation anomaly in the western Bering Sea. Geophys. Res. Let. 19, 1671–1674 (1992).

    ADS  Article  Google Scholar 

  • 69.

    Hunt, G. L. & Stabeno, P. J. Oceanography and ecology of the Aleutian Archipelago: Spatial and temporal variation. Fish. Oceanogr. 14, 292–306 (2005).

    Article  Google Scholar 

  • 70.

    Konar, et al. A swath across the great divide: Kelp forests across the Samalga Pass biogeographic break. Cont. Shelf Res. 143, 78–88 (2017).

    ADS  Article  Google Scholar 

  • 71.

    Wilkinson, C. R. & Cheshire, A. C. Patterns in the distribution of sponge populations across the central Great Barrier Reef. Coral Reefs 8, 127–134 (1989).

    ADS  Article  Google Scholar 

  • 72.

    Wilkinson, C. R. & Cheshire, A. C. Comparisons of sponge populations across the Barrier Reefs of Australia and Belize: Evidence for higher productivity in the Caribbean. Mar. Ecol. Prog. Ser. 67, 285–294 (1990).

    ADS  Article  Google Scholar 

  • 73.

    Dayton, P. K., Tegner, M. J., Edwards, P. B. & Riser, K. L. Temporal and spatial scales of kelp demography: The role of oceanographic climate. Ecol. Monogr. 69, 219–250 (1999).

    Article  Google Scholar 

  • 74.

    Konar, B., Edwards, M. & Efird, T. Local habitat and regional oceanographic influence on fish distribution patterns in the diminishing kelp forests across the Aleutian Archipelago. Environ. Biol. Fish. 98, 1935–1951 (2015).

    Article  Google Scholar 

  • 75.

    Blanchette, C. A., Broitman, B. R. & Gaines, S. D. Intertidal community structure and oceanographic patterns around Santa Cruz Island, CA, USA. Mar. Biol. 149, 689–701 (2006).

    Article  Google Scholar 

  • 76.

    García-Charton, J. A. et al. Multi-scale spatial heterogeneity, habitat structure, and the effect of marine reserves on Western Mediterranean rocky reef fish assemblages. Mar. Biol. 144, 161–182 (2004).

    Article  Google Scholar 

  • 77.

    Hewitt, J. E., Thrush, S. F. & Dayton, P. D. Habitat variation, species diversity and ecological functioning in a marine system. J. Exp. Mar. Biol. Ecol. 366, 116–122 (2008).

    Article  Google Scholar 

  • 78.

    Bland, A., Konar, B. & Edwards, M. Spatial trends and environmental drivers of epibenthic shelf community structure across the Aleutian Islands. Cont. Shelf Res. 175, 12–29 (2019).

    ADS  Article  Google Scholar 

  • 79.

    Bruno, J. F., Petes, L. E., Drew Harvell, C. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061 (2003).

    Article  Google Scholar 

  • 80.

    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Cons. Biol. 21, 1301–1315 (2007).

    Article  Google Scholar 

  • 81.

    Hoffman, G. et al. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS One 20, 20 (2011).

    Google Scholar 

  • 82.

    Svenning, J. C. et al. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proc. Natl. Acad. Sci. 113, 898–906 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 83.

    Stewart, N. & Konar, B. Kelp forests versus urchin barrens: Alternate stable states and their effect on sea otter prey quality in the Aleutian Islands. J. Mar. Sci. https://doi.org/10.1155/2012/492308 (2012).

    Article  Google Scholar 

  • 84.

    Rogachev, K. A. & Shlyk, N. V. The role of the Aleutian eddies in the Kamchatka current warming. Russ. Meteorol. Hydrol. 43, 43–48 (2018).

    Article  Google Scholar 

  • 85.

    Scheibling, R. E. & Hennigar, A. W. Recurrent outbreaks of disease in sea urchins Strongylocentrotus droebachiensis in Nova Scotia: Evidence for a link with large-scale meterologic and oceanographic events. Mar. Ecol. Prog. Ser. 152, 155–165 (1997).

    ADS  Article  Google Scholar 

  • 86.

    Girard, D., Clemente, S., Toledo-Guedes, K., Brito, A. & Hernández, J. C. A mass mortality of subtropical intertidal populations of the sea urchin Paracentrotus lividus: Analysis of potential links with environmental conditions. Mar. Ecol. 33, 377–385 (2012).

    ADS  Article  Google Scholar 

  • 87.

    Feehan, C. J. & Scheibling, R. E. Disease as a control of sea urchin populations in Nova Scotian kelp beds. Mar. Ecol. Prog. Ser. 500, 149–158 (2014).

    ADS  Article  Google Scholar 

  • 88.

    Hagen, N. T. Sea urchin outbreaks and nematode epizootics in Vestfjorden, northern Norway. Sarsia 72, 213–229 (1987).

    Article  Google Scholar 

  • 89.

    Shimizu, M. & Nagakura, K. Acid phosphatase activity in the body wall of the sea urchin, Strongylocentrotus intermedius, cultured at varying water temperatures. Comp. Biochem. Physiol. 106B, 303–307 (1993).

    CAS  Google Scholar 

  • 90.

    Wang, Y. et al. Isolation and characterization of bacteria associated with a syndrome disease of sea urchin Strongylocentrotus intermedius in North China. Aquacult. Res. 44, 691–700 (2013).

    CAS  Article  Google Scholar 

  • 91.

    Behrens, M. D. & Lafferty, K. D. Effects of marine reserves and urchin disease on southern Californian rocky reef communities. Mar. Ecol. Prog. Ser. 279, 129–139 (2004).

    ADS  Article  Google Scholar 

  • 92.

    Feehan, C. J. & Scheibling, R. E. A mass mortality of subtropical intertidal populations of the sea urchin Paracentrotus lividus: Analysis of potential links with environmental conditions. Mar. Biol. 161, 1467–1485 (2014).

    CAS  Article  Google Scholar 

  • 93.

    Stabeno, P. J., Kachel, D. G., Kachel, N. B. & Sullivan, M. E. Observations from moorings in the Aleutian Passes: Temperature, salinity and transport. Fish. Oceanogr. 14, 39–54 (2005).

    Article  Google Scholar 

  • 94.

    Favorite, F. Flow into the Bering Sea through the Aleutian Passes. In Oceanography of the Bering Sea with Emphasis on Renewable Resources (eds Hood, D. W. & Kelly, E. J.) 3–37 (Institute of Marine Science University of Alaska, Fairbanks, 1974).

    Google Scholar 


  • Source: Ecology - nature.com

    Cold weather increases the risk of scrotal torsion events: results of an ecological study of acute scrotal pain in Scotland over 25 years

    3 Questions: Fatih Birol on post-Covid trajectories in energy and climate