in

Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota

  • 1.

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Hird, S. M. Evolutionary biology needs wild microbiomes. Front. Microbiol. 8, 1–10 (2017).

    Article  Google Scholar 

  • 3.

    Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 148, 1258–1270 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Marchesi, J. R. et al. The gut microbiota and host health: A new clinical frontier. Gut 65, 330–339 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Lee, W. J. & Hase, K. Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 10, 416–424 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Visconti, A. et al. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 10, 4505 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 7.

    Belkaid, Y. & Hand, T. W. Role of microbiota in immunity and inflammation. Cell 157, 121–141 (2018).

    Article  CAS  Google Scholar 

  • 8.

    Pickard, J. M., Zeng, M. Y., Caruso, R. & Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 279, 70–89 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Pickard, J. M. & Núñez, G. Pathogen Colonization Resistance in the Gut and Its Manipulation for Improved Health. Am. J. Pathol. 189, 1300–1310 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Nguyen, T. L. A., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Rosshart, S. P. et al. Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell 171, 1015–1028 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Blanga-Kanfi, S. et al. Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evol. Biol. 9, 71 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. T. Roy. Soc. B 370, 20140295 (2015).

    Article  Google Scholar 

  • 14.

    Maurice, C. F. et al. Marked seasonal variation in the wild mouse gut microbiota. ISME J. 9, 2423–2434 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Weldon, L. et al. The gut microbiota of wild mice. PLoS ONE 10, 1–15 (2015).

    Article  CAS  Google Scholar 

  • 16.

    Lavrinienko, A., et al. Environmental radiation alters the gut microbiome of the bank vole Myodes glareolus. ISME J 12 (2018).

  • 17.

    Lavrinienko, A., Tukalenko, E., Mappes, T. & Watts, P. C. Skin and gut microbiomes of a wild mammal respond to different environmental cues. Microbiome 6, 209 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Lavrinienko, A. et al. Applying the Anna Karenina principle for wild animal gut microbiota: temporal stability of the bank vole gut microbiota in a disturbed environment. J. Anim. Ecol. In press, https://doi.org/10.1111/1365-2656.13342 (2020).

  • 19.

    Xiao, L. et al. A catalog of the mouse gut metagenome. Nat. Biotech. 33, 1103–1108 (2015).

    CAS  Article  Google Scholar 

  • 20.

    Pan, H. et al. A gene catalogue of the Sprague-Dawley rat gut metagenome. GigaScience 7, 1–8 (2018).

    CAS  Google Scholar 

  • 21.

    Hutterer, R., et al. Myodes glareolus. The IUCN Red List of Threatened Species e.T4973A115070929 (2016); erratum (2017).

  • 22.

    Lonn, E. et al. Balancing selection maintains polymorphisms at neurogenetic loci in field experiments. Proc. Natl. Acad. Sci. USA 114, 3690–3695 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Van Cann, J., Koskela, E., Mappes, T., Sims, A. & Watts, P. C. Intergenerational fitness effects of the early life environment in a wild rodent. J. Anim. Ecol. 88, 1355–1365 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Kohl, K. D., Sadowska, E. T., Rudolf, A. M., Dearing, M. D. & Koteja, P. Experimental evolution on a wild mammal species results in modifications of gut microbial communities. Front. Microbiol. 7, 1–10 (2016).

    Google Scholar 

  • 25.

    Ormerod, K. L. et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 4, 1–17 (2016).

    Article  Google Scholar 

  • 26.

    Lagkouvardos, I. et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 7, 1–15 (2019).

    Article  Google Scholar 

  • 27.

    Tonteri, E. J. et al. Tick-borne encephalitis virus in wild rodents in winter, Finland, 2008–2009. Emerg. Infect. Dis. 17, 72–75 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Vaheri, A. et al. Hantavirus infections in Europe and their impact on public health. Rev. Med. Virol. 23, 35–49 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc Natl. Acad. Sci. USA 112, 7039–7044 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Van Duijvendijk, G., Sprong, H. & Takken, W. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: A review. Parasite. Vector. 8, 13–15 (2015).

    Article  Google Scholar 

  • 31.

    Lavrinienko, A. et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. NCBI Sequence Read Archive https://identifiers.org/insdc.sra:SRP254056 (2020).

  • 32.

    Didion, J. P., Martin, M. & Collins, F. S. Atropos: Specific, sensitive, and speedy trimming of sequencing reads. PeerJ 5, e3720 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 33.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 1–8 (2018).

    Article  CAS  Google Scholar 

  • 35.

    Li, D. et al. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Li, W. et al. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13, 656–668 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Sommer, D. D. et al. Minimus: A fast, lightweight genome assembler. BMC Bioinform. 8, 1–11 (2007).

    Article  CAS  Google Scholar 

  • 38.

    Graham, E. D., Heidelberg, J. F. & Tully, B. J. Binsanity: Unsupervised clustering of environmental microbial assemblies using coverage and affinity propagation. PeerJ 5, e3035 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 39.

    Parks, D. H. et al. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Delmont, T. O. & Eren, A. M. Identifying contamination with advanced visualization and analysis practices: Metagenomic approaches for eukaryotic genome assemblies. PeerJ 4, e1839 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 42.

    Campbell, J. H. et al. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc. Natl. Acad. Sci. USA. 110, 5540–5545 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Chen, L.-X. et al. Accurate and complete genomes from metagenomes. Genome Res. 30, 315–333 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).

    Article  CAS  Google Scholar 

  • 45.

    Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI Reference Sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, 501–504 (2005).

    Article  CAS  Google Scholar 

  • 47.

    Potter, S. C. et al. HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Edgar, R. C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 1–19 (2004).

    Article  CAS  Google Scholar 

  • 50.

    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 51.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 5, e9490 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 52.

    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Lavrinienko, A. et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. figshare https://doi.org/10.6084/m9.figshare.c.4910601 (2020).

  • 54.

    Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 55.

    Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Ecol. Evol. 27, 105–117 (2019).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    China’s researchers have valuable experiences that the world needs to hear about

    Conventional analysis methods underestimate the plant-available pools of calcium, magnesium and potassium in forest soils