in

Understanding deep learning in land use classification based on Sentinel-2 time series

  • 1.

    Commission, E. et al. A resource-efficient Europe-flagship initiative under the Europe 2020 strategy. Communication 2011, 21 (2011).

    Google Scholar 

  • 2.

    Union, E. Commission implementing regulation (eu) 2018/746 of 18 May 2018 amending implementing regulation (eu) no 809/2014 as regards modification of single applications and payment claims and checks. Off. J. Eur. Union 61, 1–7 (2018).

    Google Scholar 

  • 3.

    Reichstein, M. et al. Deep learning and process understanding for data-driven earth system science. Nature 566, 195–204 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 4.

    Liu, Y. et al. Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv:1605.01156(arXiv preprint) (2016).

  • 5.

    Vandal, T. et al. Deepsd: Generating high resolution climate change projections through single image super-resolution. In Proceedings of the 23rd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, 1663–1672 (2017).

  • 6.

    Shi, X. et al. Deep learning for precipitation nowcasting: A benchmark and a new model. Adv. Neural Inf. Process. Syst. 20, 5617–5627 (2017).

    Google Scholar 

  • 7.

    Reichstein, M. et al. Potential of new machine learning methods for understanding long-term interannual variability of carbon and energy fluxes and states from site to global scale. AGUFM 2016, B44A-07 (2016).

    Google Scholar 

  • 8.

    Liu, Y. et al. Deep learning for pixel-level image fusion: Recent advances and future prospects. Inf. Fusion 42, 158–173 (2018).

    Article  Google Scholar 

  • 9.

    Wang, S. et al. A deep learning framework for remote sensing image registration. ISPRS J. Photogramm. Remote Sens. 145, 148–164 (2018).

    ADS  Article  Google Scholar 

  • 10.

    Lyu, H., Lu, H. & Mou, L. Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sens. 8, 506 (2016).

    ADS  Article  Google Scholar 

  • 11.

    Liu, Y., Minh Nguyen, D., Deligiannis, N., Ding, W. & Munteanu, A. Hourglass-shapenetwork based semantic segmentation for high resolution aerial imagery. Remote Sens. 9, 522 (2017).

    ADS  Article  Google Scholar 

  • 12.

    Lees, T. et al. A machine learning pipeline to predict vegetation health. Eighth International Conference on Learning Representations 1–5, (2020).

  • 13.

    Zhao, W. & Du, S. Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 113, 155–165 (2016).

    ADS  Article  Google Scholar 

  • 14.

    Rußwurm, M. & Körner, M. Multi-temporal land cover classification with long short-term memory neural networks. Int. Arch. Photogramm. Remote Sens. Spat.Inf. Sci. 42, 551 (2017).

    Article  Google Scholar 

  • 15.

    Chen, Y., Lin, Z., Zhao, X., Wang, G. & Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7, 2094–2107 (2014).

    ADS  Article  Google Scholar 

  • 16.

    Li, W., Fu, H., Yu, L. & Cracknell, A. Deep learning based oil palm tree detection and counting for high-resolution remote sensing images. Remote Sens. 9, 22 (2017).

    ADS  Article  Google Scholar 

  • 17.

    Hu, F., Xia, G.-S., Hu, J. & Zhang, L. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 7, 14680–14707 (2015).

    ADS  Article  Google Scholar 

  • 18.

    Liang, H. & Li, Q. Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sens. 8, 99 (2016).

    ADS  Article  Google Scholar 

  • 19.

    Zhang, L., Zhang, L. & Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens.Mag. 4, 22–40 (2016).

    Article  Google Scholar 

  • 20.

    Zhu, X. X. et al. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens.Mag. 5, 8–36 (2017).

    Article  Google Scholar 

  • 21.

    Ma, L. et al. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 152, 166–177 (2019).

    ADS  Article  Google Scholar 

  • 22.

    Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (The MIT Press, New York, 2016).

    Google Scholar 

  • 23.

    Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Campos-Taberner, M. et al. Processing of extremely high-resolution lidar and RGB data: Outcome of the 2015 IEEE GRSS data fusion contest-part a: 2-d contest. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9, 5547–5559 (2016).

    ADS  Article  Google Scholar 

  • 25.

    Zhong, L., Hu, L. & Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 221, 430–443 (2019).

    ADS  Article  Google Scholar 

  • 26.

    Liu, T., Abd-Elrahman, A., Morton, J. & Wilhelm, V. L. Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system. GISci. Remote Sens. 55, 243–264 (2018).

    Article  Google Scholar 

  • 27.

    Montavon, G., Samek, W. & Müller, K.-R. Methods for interpreting and understanding deep neural networks. Digit. Signal Proc. 73, 1–15 (2018).

    MathSciNet  Article  Google Scholar 

  • 28.

    Gunning, D. et al. Xai–explainable artificial intelligence. Sci. Robot. 4, 20 (2019).

    Article  Google Scholar 

  • 29.

    Samek, W. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning Vol. 11700 (Springer, Berlin, 2019).

    Google Scholar 

  • 30.

    Haury, A.-C., Gestraud, P. & Vert, J.-P. The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS One 6, e28210 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 2522–5839 (2020).

    Article  Google Scholar 

  • 32.

    Skilton, M. & Hovsepian, F. The 4th Industrial Revolution: Responding to the Impact of Artificial Intelligence on Business (Springer, Berlin, 2017).

    Google Scholar 

  • 33.

    Tjoa, E. & Guan, C. A survey on explainable artificial intelligence (XAI): Towards medical XAI. arXiv:1907.07374(arXiv preprint) (2019).

  • 34.

    Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J. & Müller, K.-R. Toward interpretable machine learning: Transparent deep neural networks and beyond. arXiv:2003.07631(arXiv preprint) (2020).

  • 35.

    Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    ADS  MATH  Article  Google Scholar 

  • 36.

    Montavon, G., Binder, A., Lapuschkin, S., Samek, W. & Müller, K.-R. Layer-wise relevance propagation: An overview. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning 193–209 (Springer, Berlin, 2019).

    Google Scholar 

  • 37.

    Arras, L. et al. Explaining and interpreting lstms. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning 211–238 (Springer, Berlin, 2019).

    Google Scholar 

  • 38.

    Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep features for discriminative localization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2921–2929, (2016).

  • 39.

    Wolanin, A. et al. Estimating and understanding crop yields with explainable deep learning in the Indian wheat belt. Environ. Res. Lett. 15, 024019 (2020).

    ADS  Article  Google Scholar 

  • 40.

    Marcos, D., Lobry, S. & Tuia, D. Semantically interpretable activation maps: What-where-how explanations within CNNS. In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 4207–4215 (IEEE, 2019).

  • 41.

    Pelletier, C., Webb, G. I. & Petitjean, F. Temporal convolutional neural network for the classification of satellite image time series. Remote Sens. 11, 523 (2019).

    ADS  Article  Google Scholar 

  • 42.

    Rußwurm, M. & Körner, M. Multi-temporal land cover classification with sequential recurrent encoders. ISPRS Int. J. Geo-Inf. 7, 129 (2018).

    Article  Google Scholar 

  • 43.

    Mnih, V. et al. Recurrent models of visual attention. Adv. Neural Inf. Process. Syst. 20, 2204–2212 (2014).

    Google Scholar 

  • 44.

    Yin, W., Schütze, H., Xiang, B. & Zhou, B. Abcnn: Attention-based convolutional neural network for modeling sentence pairs. Trans. Assoc. Comput. Linguist. 4, 259–272 (2016).

    Article  Google Scholar 

  • 45.

    Ran, X., Shan, Z., Fang, Y. & Lin, C. An LSTM-based method with attention mechanism for travel time prediction. Sensors 19, 861 (2019).

    Article  Google Scholar 

  • 46.

    Liu, G. & Guo, J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing 337, 325–338 (2019).

    Article  Google Scholar 

  • 47.

    Xu, R., Tao, Y., Lu, Z. & Zhong, Y. Attention-mechanism-containing neural networks for high-resolution remote sensing image classification. Remote Sens. 10, 1602 (2018).

    ADS  Article  Google Scholar 

  • 48.

    Liu, R., Cheng, Z., Zhang, L. & Li, J. Remote sensing image change detection based on information transmission and attention mechanism. IEEE Access 7, 156349–156359 (2019).

    Article  Google Scholar 

  • 49.

    Fu, J. et al. Dual attention network for scene segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 3146–3154, (2019).

  • 50.

    Campos-Taberner, M., García-Haro, F. J., Martínez, B., Sánchez-Ruíz, S. & Gilabert, M. A. A copernicus Sentinel-1 and Sentinel-2 classification framework for the 2020+ European Common Agricultural Policy: A case study in València (Spain). Agronomy 9, 556 (2019).

    Article  Google Scholar 

  • 51.

    Campos-Taberner, M. et al. A critical comparison of remote sensing leaf area index estimates over rice-cultivated areas: From Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUMETSAT Polar System. Remote Sens. 10, 763 (2018).

    ADS  Article  Google Scholar 

  • 52.

    Campos-Taberner, M. et al. Exploitation of SAR and optical Sentinel data to detect rice crop and estimate seasonal dynamics of leaf area index. Remote Sens. 9, 248 (2017).

    ADS  Article  Google Scholar 

  • 53.

    Immitzer, M., Vuolo, F. & Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 8, 166 (2016).

    ADS  Article  Google Scholar 

  • 54.

    Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C. & Ng, W.-T. How much does multi-temporal Sentinel-2 data improve crop type classification?. Int. J. Appl. Earth Obs. Geoinf. 72, 122–130 (2018).

    ADS  Article  Google Scholar 

  • 55.

    García-Haro, F. J. et al. A global canopy water content product from AVHRR/Metop. ISPRS J. Photogramm. Remote Sens. 162, 77–93 (2020).

    ADS  Article  Google Scholar 

  • 56.

    Kobayashi, N., Tani, H., Wang, X. & Sonobe, R. Crop classification using spectral indices derived from Sentinel-2a imagery. J. Inf. Telecommun. 4, 67–90 (2020).

    Google Scholar 

  • 57.

    Rouse Jr, J., Haas, R., Schell, J. & Deering, D. Monitoring vegetation systems in the great plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium: The Proceedings of a Symposium Held by Goddard Space Flight Center at Washington, DC on December 10-14, 1973: Prepared at Goddard Space Flight Center, vol. 351, 309–317 (Scientific and Technical Information Office, National Aeronautics and Space…, 1974).

  • 58.

    Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).

    ADS  Article  Google Scholar 

  • 59.

    Chatziantoniou, A., Psomiadis, E. & Petropoulos, G. P. Co-orbital Sentinel 1 and 2 for lulc mapping with emphasis on wetlands in a mediterranean setting based on machine learning. Remote Sens. 9, 1259 (2017).

    ADS  Article  Google Scholar 

  • 60.

    Erinjery, J. J., Singh, M. & Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the western ghats using multispectral Sentinel-2 and sar Sentinel-1 satellite imagery. Remote Sens. Environ. 216, 345–354 (2018).

    ADS  Article  Google Scholar 

  • 61.

    Schuster, M. & Paliwal, K. K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45, 2673–2681 (1997).

    ADS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Superconductor technology for smaller, sooner fusion

    Solar-powered system extracts drinkable water from “dry” air