in

Untangling the seasonal dynamics of plant-pollinator communities

  • 1.

    Olesen, J. M., Bascompte, J., Elberling, H. & Jordano, P. Temporal dynamics in a pollination network. Ecology 89, 1573–1582 (2008).

    PubMed  Google Scholar 

  • 2.

    Petchey, O. L., Brose, U. & Rall, B. C. Predicting the effects of temperature on food web connectance. Philos. Trans. R. Soc. B 365, 2081–2091 (2010).

    Google Scholar 

  • 3.

    Menke, S., Böhning-Gaese, K. & Schleuning, M. Plant–frugivore networks are less specialized and more robust at forest–farmland edges than in the interior of a tropical forest. Oikos 121, 1553–1566 (2012).

    Google Scholar 

  • 4.

    Aizen, M. A., Morales, C. L. & Morales, J. M. Invasive mutualists erode native pollination webs. PLoS Biol. 6, e31 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 5.

    Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 6.

    Vázquez, D. P. et al. Species abundance and asymmetric interaction strength in ecological networks. Oikos 116, 1120–1127 (2007).

    Google Scholar 

  • 7.

    Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).

    Google Scholar 

  • 8.

    Holt, R. D. & Kotler, B. P. Short-term apparent competition. Am. Nat. 130, 412–430 (1987).

    Google Scholar 

  • 9.

    May, R. M. Will a large complex system be stable? Nature 238, 413 (1972).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    ADS  PubMed  Google Scholar 

  • 11.

    de Ruiter, P. C., Wolters, V., Moore, J. C. & Winemiller, K. O. Food web ecology: playing jenga and beyond. Science 309, 68–71 (2005).

    PubMed  Google Scholar 

  • 12.

    Ings, T. C. et al. Ecological networks–beyond food webs. J. Anim. Ecol. 78, 253–269 (2009).

    PubMed  Google Scholar 

  • 13.

    Simanonok, M. P. & Burkle, L. A. Partitioning interaction turnover among alpine pollination networks: spatial, temporal, and environmental patterns. Ecosphere 5, 1–17 (2014).

    Google Scholar 

  • 14.

    CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).

    PubMed  Google Scholar 

  • 15.

    Petanidou, T., Kallimanis, A. S., Tzanopoulos, J., Sgardelis, S. P. & Pantis, J. D. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 11, 564–575 (2008).

    PubMed  Google Scholar 

  • 16.

    Kaiser-Bunbury, C. N., Memmott, J. & Müller, C. B. Community structure of pollination webs of mauritian heathland habitats. Perspect. Plant Ecol. Evol. Sys. 11, 241–254 (2009).

    Google Scholar 

  • 17.

    MacLeod, M., Genung, M. A., Ascher, J. S. & Winfree, R. Measuring partner choice in plant–pollinator networks: using null models to separate rewiring and fidelity from chance. Ecology 97, 2925–2931 (2016).

    PubMed  Google Scholar 

  • 18.

    Alarcón, R., Waser, N. M. & Ollerton, J. Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117, 1796–1807 (2008).

    Google Scholar 

  • 19.

    Ponisio, L. C., Gaiarsa, M. P. & Kremen, C. Opportunistic attachment assembles plant–pollinator networks. Ecol. Lett. 20, 1261–1272 (2017).

    PubMed  Google Scholar 

  • 20.

    Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339, 1611–1615 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 21.

    Cirtwill, A. R., Roslin, T., Rasmussen, C., Olesen, J. M. & Stouffer, D. B. Between-year changes in community composition shape species roles in an arctic plant–pollinator network. Oikos 127, 1163–1176 (2018).

    Google Scholar 

  • 22.

    Bascompte, J. & Stouffer, D. B. The assembly and disassembly of ecological networks. Philos. Trans. R. Soc. B 364, 1781–1787 (2009).

    Google Scholar 

  • 23.

    Jordano, P., Bascompte, J. & Olesen, J. M. Invariant properties in coevolutionary networks of plant–animal interactions. Ecol. Lett. 6, 69–81 (2003).

    Google Scholar 

  • 24.

    Díaz-Castelazo, C. et al. Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology 91, 793–801 (2010).

    PubMed  Google Scholar 

  • 25.

    Tylianakis, J. M., Martínez-García, L. B., Richardson, S. J., Peltzer, D. A. & Dickie, I. A. Symmetric assembly and disassembly processes in an ecological network. Ecol. Lett. 21, 896–904 (2018).

    PubMed  Google Scholar 

  • 26.

    Gravel, D., Massol, F., Canard, E., Mouillot, D. & Mouquet, N. Trophic theory of island biogeography. Ecol. Lett. 14, 1010–1016 (2011).

    PubMed  Google Scholar 

  • 27.

    Dáttilo, W., Guimarães, P. R. & Izzo, T. J. Spatial structure of ant–plant mutualistic networks. Oikos 122, 1643–1648 (2013).

    Google Scholar 

  • 28.

    Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353–1361 (2012).

    PubMed  Google Scholar 

  • 29.

    Bramon Mora, B., Gravel, D., Gilarranz, L. J., Poisot, T. & Stouffer, D. B. Identifying a common backbone of interactions underlying food webs from different ecosystems. Nat. Commun. 9, 2603 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Stouffer, D. B., Sales-Pardo, M., Sirer, M. I. & Bascompte, J. Evolutionary conservation of species roles in food webs. Science 335, 1489–1492 (2012).

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  • 31.

    Baker, N. J., Kaartinen, R., Roslin, T. & Stouffer, D. B. Species roles in food webs show fidelity across a highly variable oak forest. Ecography 38, 130–139 (2015).

    Google Scholar 

  • 32.

    CaraDonna, P. J. & Waser, N. M. Temporal flexibility in the structure of plant–pollinator interaction networks. Oikos https://doi.org/10.1111/oik.07526 (2020).

  • 33.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • 34.

    Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 35.

    Chacoff, N. P., Resasco, J. & Vázquez, D. P. Interaction frequency, network position, and the temporal persistence of interactions in a plant–pollinator network. Ecology 99, 21–28 (2018).

    PubMed  Google Scholar 

  • 36.

    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 37.

    Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).

    PubMed  Google Scholar 

  • 38.

    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).

    PubMed  Google Scholar 

  • 39.

    Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14, 1062–1072 (2011).

    PubMed  Google Scholar 

  • 40.

    Goldwasser, L. & Roughgarden, J. Sampling effects and the estimation of food-web properties. Ecology 78, 41–54 (1997).

    Google Scholar 

  • 41.

    Westphal, C., Steffan-Dewenter, I. & Tscharntke, T. Mass flowering crops enhance pollinator densities at a landscape scale. Ecol. Lett. 6, 961–965 (2003).

    Google Scholar 

  • 42.

    Miele, V., Ramos-Jiliberto, R. & Vázquez, D. P. Core–periphery dynamics in a plant–pollinator network. Preprint at https://doi.org/10.1101/543637 (2019).

  • 43.

    Hackett, T. D. et al. Reshaping our understanding of species’ roles in landscape-scale networks. Ecol. Lett. 22, 1367–1377 (2019).

    PubMed  Google Scholar 

  • 44.

    Schwarz, B. et al. Temporal scale-dependence of plant–pollinator networks. Oikos https://doi.org/10.1111/oik.07303 (2020).

  • 45.

    Bascompte, J. & Melián, C. J. Simple trophic modules for complex food webs. Ecology 86, 2868–2873 (2005).

    Google Scholar 

  • 46.

    Kondoh, M. Building trophic modules into a persistent food web. Proc. Natl Acad. Sci. USA 105, 16631–16635 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 47.

    Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Cagnolo, L., Salvo, A. & Valladares, G. Network topology: patterns and mechanisms in plant-herbivore and host-parasitoid food webs. J. Anim. Ecol. 80, 342–351 (2011).

    PubMed  Google Scholar 

  • 49.

    Aizen, M. A. et al. The phylogenetic structure of plant–pollinator networks increases with habitat size and isolation. Ecol. Lett. 19, 29–36 (2016).

    PubMed  Google Scholar 

  • 50.

    Junker, R. R., Höcherl, N. & Blüthgen, N. Responses to olfactory signals reflect network structure of flower-visitor interactions. J. Anim. Ecol. 79, 818–823 (2010).

    PubMed  Google Scholar 

  • 51.

    Coux, C., Rader, R., Bartomeus, I. & Tylianakis, J. M. Linking species functional roles to their network roles. Ecol. Lett. 19, 762–770 (2016).

    PubMed  Google Scholar 

  • 52.

    Bartomeus, I. et al. A common framework for identifying linkage rules across different types of interactions. Funct. Ecol. 30, 1894–1903 (2016).

    Google Scholar 

  • 53.

    Weinstein, B. G. & Graham, C. H. Persistent bill and corolla matching despite shifting temporal resources in tropical hummingbird-plant interactions. Ecol. Lett. 20, 326–335 (2017).

    PubMed  Google Scholar 

  • 54.

    Weinstein, B. G. & Graham, C. H. On comparing traits and abundance for predicting species interactions with imperfect detection. Food Webs 11, 17–25 (2017).

    Google Scholar 

  • 55.

    Eklöf, A. et al. The dimensionality of ecological networks. Ecol. Lett. 16, 577–583 (2013).

    PubMed  Google Scholar 

  • 56.

    Olito, C. & Fox, J. W. Species traits and abundances predict metrics of plant–pollinator network structure, but not pairwise interactions. Oikos 124, 428–436 (2015).

    Google Scholar 

  • 57.

    Hart, D. R., Stone, L. & Berman, T. Seasonal dynamics of the lake kinneret food web: the importance of the microbial loop. Limnol. Oceanogr. 45, 350–361 (2000).

    ADS  CAS  Google Scholar 

  • 58.

    Pilosof, S., Fortuna, M. A., Vinarski, M. V., Korallo-Vinarskaya, N. P. & Krasnov, B. R. Temporal dynamics of direct reciprocal and indirect effects in a host–parasite network. J. Anim. Ecol. 82, 987–996 (2013).

    PubMed  Google Scholar 

  • 59.

    Holme, P. & Saramäki, J. Temporal networks. Phys. Rep. 519, 97–125 (2012).

    ADS  Google Scholar 

  • 60.

    Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Evol. Syst. 48, 25–48 (2017).

    Google Scholar 

  • 61.

    CaraDonna, P. J. Temporal variation in plant-pollinator interactions, Rocky Mountain Biological Laboratory, CO, USA, 2013 – 2015 ver 1. Environmental Data Initiative, https://doi.org/10.6073/pasta/27dc02fe1655e3896f20326fed5cb95f (2020).

  • 62.

    Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • 63.

    Bramon Mora, B., Cirtwill, A. R. & Stouffer, D. B. pymfinder: a tool for the motif analysis of binary and quantitative complex networks. Preprint at https://doi.org/10.1101/364703 (2018).

  • 64.

    Pons, P. & Latapy, M. Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10, 191–218 (2006).

    MathSciNet  MATH  Google Scholar 

  • 65.

    Danon, L., Diaz-Guilera, A., Duch, J. & Arenas, A. Comparing community structure identification. J. Stat. Mech.: Theory E 2005, P09008 (2005).

    MATH  Google Scholar 

  • 66.

    Koster, J. & McElreath, R. Multinomial analysis of behavior: statistical methods. Behav. Ecol. Sociobiol. 71, 138 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 67.

    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall/CRC, London, 2018).

  • 68.

    Team, S. D. et al. RStan: the R interface to Stan (The R Foundation, 2019).


  • Source: Ecology - nature.com

    Pit lakes from Southern Sweden: natural radioactivity and elementary characterization

    Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens