in

Urban resources limit pair coordination over offspring provisioning

  • 1.

    Royle, N. J., Smiseth, P. T. & Kölliker, M. The Evolution of Parental Care (Oxford University Press, Oxford, 2012).

    Google Scholar 

  • 2.

    Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966).

    Article  Google Scholar 

  • 3.

    Trivers, R. L. Sexual Selection and the Descent of Man 136–179 (Aldine Press, Chicago, 1972).

    Google Scholar 

  • 4.

    Lessells, C. M. The Evolution of Parental Care (Oxford Univeristy Press, Oxford, 2012).

    Google Scholar 

  • 5.

    Houston, A. I., Székely, T. & McNamara, J. M. Conflict between parents over care. Trends Ecol. Evol. 20, 33–38 (2005).

    Article  Google Scholar 

  • 6.

    Lessells, C. M. The evolutionary outcome of sexual conflict. Philos. Trans. R. Soc. B Biol. Sci. 361, 301–317 (2006).

    CAS  Article  Google Scholar 

  • 7.

    Houston, A. I. & Davies, N. B. The evolution of cooperation and life history in the dunnock, Prunella modularis. Behav. Ecol. Ecol. Conseq. Adapt. Behav. 20, 471–487 (1985).

    Google Scholar 

  • 8.

    McNamara, J. M., Gasson, C. E. & Houston, A. I. Incorporating rules for responding into evolutionary games. Nature 401, 368–371 (1999).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    McNamara, J. M., Houston, A. I., Barta, Z. & Osorno, J. L. Should young ever be better off with one parent than with two?. Behav. Ecol. 14, 301–310 (2003).

    Article  Google Scholar 

  • 10.

    Lessells, C. M. & McNamara, J. M. Sexual conflict over parental investment in repeated bouts: Negotiation reduces overall care. Proc. R. Soc. B Biol. Sci. 279, 1506–1514 (2012).

    CAS  Article  Google Scholar 

  • 11.

    Johnstone, R. A. & Hinde, C. A. Negotiation over offspring care – how should parents respond to each other’s efforts?. Behav. Ecol. 17, 818–827 (2006).

    Article  Google Scholar 

  • 12.

    Royle, N. J., Hartley, I. R. & Parker, G. A. Sexual conflict reduces offspring fitness in zebra finches. Nature 416, 733–736 (2002).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Johnstone, R. A. et al. Reciprocity and conditional cooperation between great tit parents. Behav. Ecol. 25, 216–222 (2014).

    Article  Google Scholar 

  • 14.

    Savage, J. L., Browning, L. E., Manica, A., Russell, A. F. & Johnstone, R. A. Turn-taking in cooperative offspring care: By-product of individual provisioning behavior or active response rule?. Behav. Ecol. Sociobiol. 71, 162 (2017).

    Article  Google Scholar 

  • 15.

    Raihani, N. J., Nelson-Flower, M. J., Moyes, K., Browning, L. E. & Ridley, A. R. Synchronous provisioning increases brood survival in cooperatively breeding pied babblers. J. Anim. Ecol. 79, 44–52 (2010).

    Article  Google Scholar 

  • 16.

    Mariette, M. M. & Griffith, C. S. The adaptive significance of provisioning and foraging coordination between breeding partners. Am. Nat. 185, 270–280 (2015).

    Article  Google Scholar 

  • 17.

    Bebbington, K. & Hatchwell, B. J. Coordinated parental provisioning is related to feeding rate and reproductive success in a songbird. Behav. Ecol. 27, 652–659 (2016).

    Article  Google Scholar 

  • 18.

    Leniowski, K. & Węgrzyn, E. Synchronisation of parental behaviours reduces the risk of nest predation in a socially monogamous passerine bird. Sci. Rep. 8, 7385 (2018).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Shen, S. F., Chen, H. C., Vehrencamp, S. L. & Yuan, H. W. Group provisioning limits sharing conflict among nestlings in joint-nesting Taiwan yuhinas. Biol. Lett. 6, 318–321 (2010).

    Article  Google Scholar 

  • 20.

    Savage, J. L. & Hinde, C. A. What can we quantify about carer behavior?. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00418 (2019).

    Article  Google Scholar 

  • 21.

    Baldan, D., Curk, T., Hinde, C. A. & Lessells, C. M. Alternation of nest visits varies with experimentally manipulated workload in brood-provisioning great tits. Anim. Behav. 156, 139–146. https://doi.org/10.1016/j.anbehav.2019.08.004 (2019).

    Article  Google Scholar 

  • 22.

    Griffioen, M., Müller, W. & Iserbyt, A. A fixed agreement—consequences of brood size manipulation on alternation in blue tits. PeerJ 7, e6826. https://doi.org/10.7717/peerj.6826 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Iserbyt, A., Fresneau, N., Kortenhoff, T., Eens, M. & Muller, W. Decreasing parental task specialization promotes conditional cooperation. Sci. Rep. 7, 20 (2017).

    Article  Google Scholar 

  • 24.

    Baldan, D., Hinde, C. A. & Lessells, C. M. Turn-taking between provisioning parents: Partitioning alternation. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00448 (2019).

    Article  Google Scholar 

  • 25.

    Lejeune, L. et al. Environmental effects on parental care visitation patterns in blue tits Cyanistes caeruleus. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00356 (2019).

    Article  Google Scholar 

  • 26.

    Longcore, T. & Rich, C. Ecological light pollution. Front. Ecol. Environ. 2, 191–198. https://doi.org/10.1890/1540-9295(2004)002[0191:Elp]2.0.Co;2 (2004).

    Article  Google Scholar 

  • 27.

    Warren, P. S., Katti, M., Ermann, M. & Brazel, A. Urban bioacoustics: It’s not just noise. Anim. Behav. 71, 491–502. https://doi.org/10.1016/j.anbehav.2005.07.014 (2006).

    Article  Google Scholar 

  • 28.

    McCarthy, M. P., Best, M. J. & Betts, R. A. Climate change in cities due to global warming and urban effects. Geophys. Res. Lett. https://doi.org/10.1029/2010gl042845 (2010).

    Article  Google Scholar 

  • 29.

    Chamberlain, D. E. et al. Avian productivity in urban landscapes: A review and meta-analysis. Ibis 151, 1–18. https://doi.org/10.1111/j.1474-919X.2008.00899.x (2009).

    Article  Google Scholar 

  • 30.

    Pollock, C. J., Capilla-Lasheras, P., McGill, R. A. R., Helm, B. & Dominoni, D. M. Integrated behavioural and stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits (Cyanistes caeruleus). Sci. Rep. 7, 5014. https://doi.org/10.1038/s41598-017-04575-y (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Seress, G. et al. Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecol. Appl. 28, 1143–1156. https://doi.org/10.1002/eap.1730 (2018).

    Article  PubMed  Google Scholar 

  • 32.

    Seress, G., Sándor, K., Evans, K. L. & Liker, A. Food availability limits avian reproduction in the city: An experimental study on great tits Parus major. J. Anim. Ecol. 00, 1–11. https://doi.org/10.1111/1365-2656.13211 (2020).

    Article  Google Scholar 

  • 33.

    Wilkin, T. A., King, L. E. & Sheldon, B. C. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. 40, 135–145. https://doi.org/10.1111/j.1600-048X.2009.04362.x (2009).

    Article  Google Scholar 

  • 34.

    Peach, W. J., Mallord, J. W., Ockendon, N., Orsman, C. J. & Haines, W. G. Depleted suburban house sparrow Passer domesticus population not limited by food availability. Urban Ecosyst. 21, 1053–1065. https://doi.org/10.1007/s11252-018-0784-4 (2018).

    Article  Google Scholar 

  • 35.

    Schoech, S. J. et al. Food supplementation: A tool to increase reproductive output? A case study in the threatened Florida Scrub-Jay. Biol. Cons. 141, 162–173. https://doi.org/10.1016/j.biocon.2007.09.009 (2008).

    Article  Google Scholar 

  • 36.

    Sol, D., Lapiedra, O. & González-Lagos, C. Behavioural adjustments for a life in the city. Anim. Behav. 85, 1101–1112. https://doi.org/10.1016/j.anbehav.2013.01.023 (2013).

    Article  Google Scholar 

  • 37.

    Isaksson, C. & Andersson, S. Carotenoid diet and nestling provisioning in urban and rural great tits Parus major. J. Avian Biol. 38, 564–572. https://doi.org/10.1111/j.2007.0908-8857.04030.x (2007).

    Article  Google Scholar 

  • 38.

    New, T. R. Insect Conservation and Urban Environments (Springer, Berlin, 2015).

    Google Scholar 

  • 39.

    Helden, A., Stamp, G. & Leather, S. Urban biodiversity: Comparison of insect assemblages on native and non-native trees. Urban Ecosyst. 15, 611–624. https://doi.org/10.1007/s11252-012-0231-x (2012).

    Article  Google Scholar 

  • 40.

    Tallamy, D. W. & Shropshire, K. J. Ranking lepidopteran use of native versus introduced plants. Conserv. Biol. 23, 941–947 (2009).

    Article  Google Scholar 

  • 41.

    Burghardt, K. T., Tallamy, D. W., Philips, C. & Shropshire, K. J. Non-native plants reduce abundance, richness, and host specialization in lepidopteran communities. Ecosphere 1, art11. https://doi.org/10.1890/es10-00032.1 (2010).

    Article  Google Scholar 

  • 42.

    Marciniak, B., Nadolski, J., Nowakowska, M., Loga, B. & Bańbura, J. Habitat and annual variation in arthropod abundance affects blue tit Cyanistes caeruleus reproduction. Acta Ornithol. 42, 53–62 (2007).

    Article  Google Scholar 

  • 43.

    Neil, K. & Wu, J. Effects of urbanization on plant flowering phenology: A review. Urban Ecosyst. 9, 243–257. https://doi.org/10.1007/s11252-006-9354-2 (2006).

    Article  Google Scholar 

  • 44.

    Lessells, C. M. & Stephens, D. W. Central place foraging: Single-prey loaders again. Anim. Behav. 31, 238–243 (1983).

    Article  Google Scholar 

  • 45.

    Orians, G. H. & Pearson, N. E. On the Theory of Central Place Foraging. Analysis of Ecological Systems 155–177 (Ohio State University Press, Columbus, 1979).

    Google Scholar 

  • 46.

    Arnold, K. E., Ramsay, S. L., Henderson, L. & Larcombe, S. D. Seasonal variation in diet quality: Antioxidants, invertebrates and blue tits Cyanistes caeruleus. Biol. J. Lin. Soc. 99, 708–717. https://doi.org/10.1111/j.1095-8312.2010.01377.x (2010).

    Article  Google Scholar 

  • 47.

    Ouyang, J. Q., Baldan, D., Munguia, C. & Davies, S. Genetic inheritance and environment determine endocrine plasticity to urban living. Proc. R. Soc. B Biol. Sci. 286, 20191215. https://doi.org/10.1098/rspb.2019.1215 (2019).

    CAS  Article  Google Scholar 

  • 48.

    Newhouse, M. J., Marra, P. P. & Johnson, L. S. Reproductive success of house wrens in suburban and rural landscapes. Wilson J. Ornithol. 120, 99–104 (2008).

    Article  Google Scholar 

  • 49.

    Potti, J., Dávila, J. A., Tella, J. L., Frías, Ó & Villar, S. Gender and viability selection on morphology in fledgling pied flycatchers. Mol. Ecol. 11, 1317–1326. https://doi.org/10.1046/j.1365-294X.2002.01545.x (2002).

    CAS  Article  PubMed  Google Scholar 

  • 50.

    Balogh, A. L., Ryder, T. B. & Marra, P. P. Population demography of Gray Catbirds in the suburban matrix: Sources, sinks and domestic cats. J. Ornithol. 152, 717–726. https://doi.org/10.1007/s10336-011-0648-7 (2011).

    Article  Google Scholar 

  • 51.

    Stillfried, M. et al. Do cities represent sources, sinks or isolated islands for urban wild boar population structure?. J. Appl. Ecol. 54, 272–281. https://doi.org/10.1111/1365-2664.12756 (2017).

    Article  Google Scholar 

  • 52.

    Holmes, R. T. Foraging patterns of forest birds: Male–female differences. Wilson Bull. 98, 196–213 (1986).

    Google Scholar 

  • 53.

    Chaves, F. G., Vecchi, M. B. & Alves, M. A. S. Intersexual differences in the foraging behavior of Formicivora littoralis (Thamnophilidae), an endangered Neotropical bird. Stud. Neotrop. Fauna Environ. 52, 179–186. https://doi.org/10.1080/01650521.2017.1335275 (2017).

    Article  Google Scholar 

  • 54.

    Mänd, R., Rasmann, E. & Mägi, M. When a male changes his ways: Sex differences in feeding behavior in the pied flycatcher. Behav. Ecol. 24, 853–858. https://doi.org/10.1093/beheco/art025 (2013).

    Article  Google Scholar 

  • 55.

    Kölliker, M., Brinkhof, M. W. G., Heeb, P., Fitze, P. S. & Richner, H. The quantitative genetic basis of offspring solicitation and parental response in a passerine bird with biparental care. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 2127–2132 (2000).

    Article  Google Scholar 

  • 56.

    Naef-Daenzer, B. Patch time allocation and patch sampling by foraging great and blue tits. Anim. Behav. 59, 989–999 (2000).

    CAS  Article  Google Scholar 

  • 57.

    Jarrett, C., Powell, L. L., McDevitt, H., Helm, B. & Welch, A. J. Bitter fruits of hard labour: Diet metabarcoding and telemetry reveal that urban songbirds travel further for lower-quality food. Oecologia 193, 377–388. https://doi.org/10.1007/s00442-020-04678-w (2020).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 58.

    Gering, J. C. & Blair, R. B. Predation on artificial bird nests along an urban gradient: Predatory risk or relaxation in urban environments?. Ecography 22, 532–541. https://doi.org/10.1111/j.1600-0587.1999.tb01283.x (1999).

    Article  Google Scholar 

  • 59.

    Fischer, J. D., Cleeton, S. H., Lyons, T. P. & Miller, J. R. Urbanization and the predation paradox: The role of trophic dynamics in structuring vertebrate communities. Bioscience 62, 809–818. https://doi.org/10.1525/bio.2012.62.9.6 (2012).

    Article  Google Scholar 

  • 60.

    Vincze, E. et al. Does urbanization affect predation of bird nests? A meta-analysis. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00029 (2017).

    Article  Google Scholar 

  • 61.

    Griggio, M. & Hoi, H. An experiment on the function of the long-term pair bond period in the socially monogamous bearded reedling. Anim. Behav. 82, 1329–1335. https://doi.org/10.1016/j.anbehav.2011.09.016 (2011).

    Article  Google Scholar 

  • 62.

    Griffith, S. C. Cooperation and coordination in socially monogamous birds: Moving away from a focus on sexual conflict. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00455 (2019).

    Article  Google Scholar 

  • 63.

    Alberti, M. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 30, 114–126. https://doi.org/10.1016/j.tree.2014.11.007 (2015).

    Article  PubMed  Google Scholar 

  • 64.

    Liebl, A. L. & Martin, L. B. Exploratory behaviour and stressor hyper-responsiveness facilitate range expansion of an introduced songbird. Proc. Biol. Sci. 279, 4375–4381. https://doi.org/10.1098/rspb.2012.1606 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 65.

    Sepp, T., McGraw, K. J., Kaasik, A. & Giraudeau, M. A review of urban impacts on avian life-history evolution: Does city living lead to slower pace of life?. Glob. Change Biol. 24, 1452–1469. https://doi.org/10.1111/gcb.13969 (2018).

    ADS  Article  Google Scholar 

  • 66.

    Patricelli, G. L. & Blickley, J. L. Avian communication in urban noise: Causes and consequences of vocal adjustment. Auk 123, 639–649. https://doi.org/10.1093/auk/123.3.639 (2006).

    Article  Google Scholar 

  • 67.

    Grabarczyk, E. E. & Gill, S. A. Anthropogenic noise affects male house wren response to but not detection of territorial intruders. PLoS One 14, e0220576. https://doi.org/10.1371/journal.pone.0220576 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 68.

    Schroeder, J., Nakagawa, S., Cleasby, I. R. & Burke, T. Passerine birds breeding under chronic noise experience reduced fitness. PLoS One 7, e39200. https://doi.org/10.1371/journal.pone.0039200 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 69.

    Halfwerk, W. et al. Low-frequency songs lose their potency in noisy urban conditions. Proc. Natl. Acad. Sci. 108, 14549–14554. https://doi.org/10.1073/pnas.1109091108 (2011).

    ADS  Article  PubMed  Google Scholar 

  • 70.

    Mariette, M. M. Acoustic cooperation: Acoustic communication regulates conflict and cooperation within the family. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00445 (2019).

    Article  Google Scholar 

  • 71.

    Johnstone, R. A. & Savage, J. L. Conditional cooperation and turn-taking in parental care. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00335 (2019).

    Article  Google Scholar 

  • 72.

    Ihle, M., Pick, J. L., Winney, I. S., Nakagawa, S. & Burke, T. Measuring up to reality: Null models and analysis simulations to study parental coordination over provisioning offspring. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00142 (2019).

    Article  Google Scholar 

  • 73.

    Ihle, M. et al. Rearing success does not improve with apparent pair coordination in offspring provisioning. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00405 (2019).

    Article  Google Scholar 

  • 74.

    Seress, G., Lipovits, A., Bokony, V. & Czuni, L. Quantifying the urban gradient: A practical method for broad measurements. Landsc. Urban Plan. 131, 42–50. https://doi.org/10.1016/j.landurbplan.2014.07.010 (2014).

    Article  Google Scholar 

  • 75.

    75Johnson, L. S. in The Birds of North America (ed Editor A. F. Poole) (2014).

  • 76.

    Pearse, A. T., Cavitt, J. F. & Cully, J. F. effects of food supplementation on female nest attentiveness and incubation mate feeding in two sympatric wren species. Wilson Bull. 116, 23–30 (2004).

    Article  Google Scholar 

  • 77.

    Greenewalt, C. H. & Jones, F. M. Photographic studies of the feeding of nestling house wrens. Proc. Am. Philos. Soc. 99, 200–204 (1955).

    Google Scholar 

  • 78.

    Welbers, A. A. M. H. et al. Artificial light at night reduces daily energy expenditure in breeding great tits (Parus major). Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00055 (2017).

    Article  Google Scholar 

  • 79.

    Baldan, D. & Griggio, M. Pair coordination is related to later brood desertion in a provisioning songbird. Anim. Behav. 156, 147–152. https://doi.org/10.1016/j.anbehav.2019.08.002 (2019).

    Article  Google Scholar 

  • 80.

    Pinheiro J, Bates D, DebRoy S, Sarkar D & Team, R. C. nlme: Linear and nonlinear mixed effects models. (2019).

  • 81.

    Rolinski, S., Horn, H., Petzoldt, T. & Paul, L. Identifying cardinal dates in phytoplankton time series to enable the analysis of long-term trends. Oecologia 153, 997–1008 (2007).

    ADS  Article  Google Scholar 

  • 82.

    Douma, J. C. & Weedon, J. T. Analysing continuous proportions in ecology and evolution: A practical introduction to beta and Dirichlet regression. Methods Ecol. Evol. 10, 1412–1430. https://doi.org/10.1111/2041-210x.13234 (2019).

    Article  Google Scholar 

  • 83.

    Martin, E. mclogit: Multinomial logit models, with or without random effects or overdispersion (2020).

  • 84.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48 (2015).

    Article  Google Scholar 

  • 85.

    Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Lawrence Erlbaum Associates, Hillsdale, 1988).

    Google Scholar 

  • 86.

    Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. https://doi.org/10.3389/fpsyg.2013.00863 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 87.

    Lenth, R. emmeans: Estimated marginal means, aka least-squares means. (2020).


  • Source: Ecology - nature.com

    Genetic structure in Orkney island mice: isolation promotes morphological diversification

    Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize in Zimbabwe