in

Use and non-use value of nature and the social cost of carbon

  • 1.

    Pascual, U. et al. Valuing nature’s contributions to people: the IPBES approach. Curr. Opin. Environ. Sustain. 26, 7–16 (2017).

    Article  Google Scholar 

  • 2.

    De Groot, R. S., Alkemade, R., Braat, L., Hein, L. & Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272 (2010).

    Article  Google Scholar 

  • 3.

    Turner, R. K. et al. Valuing nature: lessons learned and future research directions. Ecol. Econ. 46, 493–510 (2003).

    Article  Google Scholar 

  • 4.

    Agarwala, M., Atkinson, G., Baldock, C. & Gardiner, B. Natural capital accounting and climate change. Nat. Clim. Change 4, 520–522 (2014).

    Article  Google Scholar 

  • 5.

    Jones-Walters, L. & Mulder, I. Valuing nature: the economics of biodiversity. J. Nat. Conserv. 17, 245–247 (2009).

    Article  Google Scholar 

  • 6.

    Gomes, V. H. F., Vieira, I. C. G., Salomão, R. P. & ter Steege, H. Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Change 9, 547–553 (2019).

    Article  Google Scholar 

  • 7.

    Rogers, L. A. et al. Shifting habitats expose fishing communities to risk under climate change. Nat. Clim. Change 9, 512–516 (2019).

    Article  Google Scholar 

  • 8.

    Roberts, C. P., Allen, C. R., Angeler, D. G. & Twidwell, D. Shifting avian spatial regimes in a changing climate. Nat. Clim. Change 9, 562–566 (2019).

    Article  Google Scholar 

  • 9.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  CAS  Google Scholar 

  • 10.

    Settele, J. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds. Field, C. B. et al.) 271–360 (IPCC, Cambridge Univ. Press, 2015).

  • 11.

    Warszawski, L. et al. A multi-model analysis of risk of ecosystem shifts under climate change. Environ. Res. Lett. 8, 044018 (2013).

    Article  Google Scholar 

  • 12.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS  Article  Google Scholar 

  • 13.

    Global Assessment Report on Biodiversity and Ecosystem Services (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2019).

  • 14.

    Millennium Ecosystem Assessment Ecosystems and Human Well-being: Synthesis (Island Press, 2005).

  • 15.

    Drupp, M. A. Limits to substitution between ecosystem services and manufactured goods and implications for social discounting. Environ. Resour. Econ. 69, 135–158 (2018).

    Article  Google Scholar 

  • 16.

    Hoel, M. & Sterner, T. Discounting and relative prices. Clim. Change 84, 265–280 (2007).

    Article  Google Scholar 

  • 17.

    Sterner, T. & Persson, U. M. An even sterner review: introducing relative prices into the discounting debate. Rev. Environ. Econ. Policy 2, 61–76 (2008).

    Article  Google Scholar 

  • 18.

    Drupp, M. A. & Hänsel, M. C. Relative prices and climate policy: how the scarcity of non-market goods drives policy evaluation. Am. Econ. J. Econ. Policy https://www.aeaweb.org/articles?id=10.1257/pol.20180760 (2020).

  • 19.

    Tol, R. S. The damage costs of climate change: a note on tangibles and intangibles, applied to DICE. Energy Policy 22, 436–438 (1994).

    Article  Google Scholar 

  • 20.

    Kopp, R. E., Golub, A., Keohane, N. O. & Onda, C. The influence of the specification of climate change damages on the social cost of carbon. Economics-Kiel 6, 1–40 (2012).

    Google Scholar 

  • 21.

    Moore, F. C. & Diaz, D. B. Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Change 5, 127–131 (2015).

    Article  Google Scholar 

  • 22.

    Tol, R. S. Estimates of the damage costs of climate change. Part 1: benchmark estimates. Environ. Resour. Econ. 21, 47–73 (2002).

    Article  Google Scholar 

  • 23.

    Diaz, D. & Moore, F. Quantifying the economic risks of climate change. Nat. Clim. Change 7, 774–782 (2017).

    Article  Google Scholar 

  • 24.

    Nordhaus, W. D. & Tobin, J. in Economic Research: Retrospect and Prospect Vol. 5 1–80 (NBER, 1972).

  • 25.

    Nordhaus, W. & Sztorc, P. DICE 2013R: Introduction and User’s Manual (retrieved November, 2019); https://go.nature.com/3kmwMc5

  • 26.

    Barbier, E. B. The concept of natural capital. Oxf. Rev. Econ. Policy 35, 14–36 (2019).

    Article  Google Scholar 

  • 27.

    Arrow, K. J., Dasgupta, P., Goulder, L. H., Mumford, K. J. & Oleson, K. Sustainability and the measurement of wealth. Environ. Dev. Econ. 17, 317–353 (2012).

    Article  Google Scholar 

  • 28.

    Lange, G.-M., Wodon, Q. & Carey, K. The Changing Wealth of Nations 2018: Building a Sustainable Future (The World Bank, 2018).

  • 29.

    Hackett, S. B. & Moxnes, E. Natural capital in integrated assessment models of climate change. Ecol. Econ. 116, 354–361 (2015).

    Article  Google Scholar 

  • 30.

    Dietz, S. & Stern, N. Endogenous growth, convexity of damage and climate risk: how Nordhaus’ framework supports deep cuts in carbon emissions. Econ. J. 125, 574–620 (2015).

    Article  Google Scholar 

  • 31.

    Glotter, M. J., Pierrehumbert, R. T., Elliott, J. W., Matteson, N. J. & Moyer, E. J. A simple carbon cycle representation for economic and policy analyses. Clim. Change 126, 319–335 (2014).

    CAS  Article  Google Scholar 

  • 32.

    Arrow, K. et al. Report of the NOAA panel on contingent valuation. Fed. Regist. 58, 4601–4614 (1993).

    Google Scholar 

  • 33.

    Bateman, I. & Willis, K. (eds) Valuing Environmental Preferences: Theory and Practice of the Contingent Valuation Method in the US, EU, and Developing Countries (Oxford Univ. Press, 2001).

  • 34.

    Champ, P. A., Boyle, K. J., Brown, T. C. & Peterson, L. G. (eds) A Primer on Nonmarket Valuation Vol. 3 (Springer, 2003).

  • 35.

    Technical Support Document: – Social Cost of Carbon for Regulatory Impact Analysis – Under Executive Order 12866 (Interagency Working Group on Social Cost of Carbon, United States Government, 2010).

  • 36.

    Beckage, B. et al. Linking models of human behaviour and climate alters projected climate change. Nat. Clim. Change 8, 79–84 (2018).

    Article  Google Scholar 

  • 37.

    Breiman, L. Manual On Setting Up, Using, And Understanding Random Forests V3.1 https://www.stat.berkeley.edu/ breiman/Using_random_forests_V3.1.pdf (2002).

  • 38.

    Lemoine, D. & Traeger, C. P. Economics of tipping the climate dominoes. Nat. Clim. Change 6, 514–519 (2016).

    Article  Google Scholar 

  • 39.

    Cai, Y. & Lontzek, T. S. The social cost of carbon with economic and climate risks. J. Polit. Econ. 127, 2684–2734 (2019).

    Article  Google Scholar 

  • 40.

    Traeger, C. P. A 4-stated DICE: quantitatively addressing uncertainty effects in climate change. Environ. Resour. Econ. 59, 1–37 (2014).

    Article  Google Scholar 

  • 41.

    Crost, B. & Traeger, C. Optimal climate policy: uncertainty versus Monte Carlo. Econ. Lett. 120, 552–558 (2013).

    Article  Google Scholar 

  • 42.

    Statistical Office of the European Union Environmental Protection Expenditure Accounts: Handbook (Eurostat, 2017).

  • 43.

    Diaz, D. B. Estimating global damages from sea level rise with the Coastal Impact and Adaptation Model (CIAM). Clim. Change 137, 143–156 (2016).

    Article  Google Scholar 

  • 44.

    De Bruin, K. C., Dellink, R. B. & Tol, R. S. AD-DICE: an implementation of adaptation in the DICE model. Clim. Change 95, 63–81 (2009).

    Article  Google Scholar 

  • 45.

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    CAS  Article  Google Scholar 

  • 46.

    Chaplin-Kramer et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).

    CAS  Article  Google Scholar 

  • 47.

    Moore, F. C. et al. Mimi-PAGE, an open-source implementation of the PAGE09 integrated assessment model. Sci. Data 5, 180187 (2018).

    Article  Google Scholar 

  • 48.

    Anthoff, D., Plevin, R., Kingdon, C. & Rennels, L. Mimi: An Integrated Assessment Modeling Framework (2020); https://www.mimiframework.org/

  • 49.

    Solow, R. M. Is the end of the world at hand? Challenge 16, 39–50 (1973).

    Article  Google Scholar 

  • 50.

    Stiglitz, J. E. in Scarcity and Growth Reconsidered (ed. Smith, V. K.) 36–66 (The Johns Hopkins Univ. Press, 1979).

  • 51.

    Brandt, N., Schreyer, P. & Zipperer, V. Productivity measurement with natural capital. Rev. Income Wealth 63, S7–S21 (2017).

    Article  Google Scholar 

  • 52.

    Costanza et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article  Google Scholar 

  • 53.

    Howard, P. H. & Sterner, T. Few and not so far between: a meta-analysis of climate damage estimates. Environ. Resour. Econ. 68, 197–225 (2017).

    Article  Google Scholar 

  • 54.

    Hsiang et al. Estimating economic damage from climate change in the United States. Science 356, 1362–1369 (2017).

    CAS  Article  Google Scholar 

  • 55.

    Yamaguchi, R. & Managi, S. Backward-and forward-looking shadow prices in inclusive wealth accounting: an example of renewable energy capital. Ecol. Econ. 156, 337–349 (2019).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Genetic structure in Orkney island mice: isolation promotes morphological diversification

    Leaf versus whole-canopy remote sensing methodologies for crop monitoring under conservation agriculture: a case of study with maize in Zimbabwe